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Abstract

Among inner product spaces, separable Hilbert spaces stand out in their amenability. In this

paper, we begin considering how the theory of separable Hilbert spaces influences certain

incomplete inner product spaces W , namely those that arise as proper dense subspaces of a

separable Hilbert spaceH. By the Riesz-Fréchet theorem, every bounded operator T ∈ B(H)

posseses an adjoint T ∗ ∈ B(H). The existence of an adjoint is not gaurenteed for bounded

operators on W ; rather than studying the algebra B(W ) of bounded operators on W , we

instead restrict our focus to the algebra BA(W ) of bounded, adjointable operators on W .

This is a ∗-subalgebra of B(H), whose operator norm closure BA(W ) := C∗(W ) is a C∗-

subalgra of B(H). The main focus of this paper is to determine wither C∗(W ) = B(H).

We find this to be true when W is the span of an orthonormal basis for H, and provide an

example where this is false when W is not the span of an orthonormal basis.
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Chapter 1

Motivation and Summary

Section 1.1

Introduction

On a Hilbert space H, every bounded operator T ∈ B(H) posseses an adjoint T ∗ ∈ B(H)

by the Riesz-Fréchet theorem. This property is of great utility in the theory, and settings in

which bounded operators fail to have an adjoint are generally more difficult to analyze. In

these situations, we ask how much of the Hilbert space theory can be recovered by restricting

our attention to bounded, adjointable operators, i.e. bounded operators whose adjoint exists.

In this paper, we will consider certain subspaces W ⊂ H. It is precisely because W may

fail to be complete that its bounded operators may fail to have an adjoint. However, there

are generalizations when, roughly speaking, completeness of an “inner product” space is not

enough to ensure the existence of adjoints. For example, a Hilbert module is a (complex)

vector space which is complete in the norm defined by a certain sequilinear form taking

values in a C∗-algebra (acting like a generalized inner product). It is already commonplace

to restrict study from bounded operators to bounded, adjointable operators in this situation.

Taking inspiration from this, our goal is to apply this perspective to proper dense subspaces
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of Hilbert spaces.

Specifically, we will consider proper, dense subspaces of seperable Hilbert spaces. For

the rest of this paper, unless otherwise specified, let H be a separable, infinite-dimensional,

complex Hilbert space and W ⊂ H be a proper dense subspace. Let B(H) denote the (C∗-

algebra of) bounded operators onH. We say call a bounded operator T : W → Wadjointable

on W if there exists a bounded operator T ∗ : W → W such that 〈Tx, y〉 = 〈x, T ∗y〉 for all

x, y ∈ W . The set of all bounded, adjointable operators on W is denoted as BA(W ).

Section 1.2

Summary of Results

We begin by showing compatibility between BA(W ) and B(H), for example:

(a) Every operator T ∈ BA(W ) extends uniquely to an operator T̃ ∈ B(H).

(b) Adjoints extend to adjoints: for T ∈ BA(W ), T̃ ∗ = (T̃ )∗.

(c) Normal operators extend to normal operators: if T ∈ BA(W ) is normal, then T̃ ∈

B(H) is normal.

We then consider how the spectra between T and T̃ differ. By the spectrum of T ∈

BA(W ) we mean the operator spectrum σ(T ), which we define and show to be distinct

from the algebraic spectrum σBA(W )(T ). For operators in B(H), the operator spectrum

and algebraic spectrum coincide. In both cases, we can partition the spectrum into the

point, continuous, and residual spectra, i.e. σ(T ) = σp(T ) t σc(T ) t σr(T ). The notion of

approximate eigenvalue λ ∈ σap(T ) also makes sense in both cases. We show the following:

(a) σ(T ) ⊃ σ(T̃ ).

(b) σp(T ) ⊂ σp(T̃ ).
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(c) σap(T ) = σap(T̃ ).

(d) If T is normal, then σap(T ) = σ(T̃ ).

Next, we observe the non-functoriality of BA(−): given a sequence of subspace inclusions

W0 ⊂ W ⊂ H, it is possible that

(a) BA(W0) 6⊂ BA(W ).

(b) BA(W ) 6⊂ BA(W0).

Nonetheless, the closure C∗(W ) for any dense subspace W always contains the compact

operators, i.e. K(H) ⊂ C∗(W ).

Finally, we consider the question of whether BA(W ) ⊂ B(H) is dense. Our main results

are as follows:

(a) If W is the span of an orthonormal basis, then BA(W ) ⊂ B(H) is dense.

(b) As a counterexample of where this fails to hold when W is not the span of an orthonor-

mal basis, BA(`1) is not dense in B(`2).
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Chapter 2

Linear and Algebraic Structure

Section 2.1

Linear Structure

To begin, we recall the following:

Lemma 2.1.1. A countable orthonormal basis {en}n∈N ⊂ H is a collection of orthonormal

vectors that is complete. Completeness in this situation can be characterized in the following

equivalent ways:

• for any vector y, if 〈y, en〉 = 0 for all n ∈ N, then y = 0

• span{eα}n∈N is dense

If H posseses a countable orthonormal basis, then

x =
∞∑
n=1

〈x, en〉en.

for any x ∈ H.

Proof. See, for example, Theorem 4.14 and Theorem 4.15 in [10].
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Lemma 2.1.2. A Hilbert space is separable (in the topological sense) if and only if it has a

countable, orthonormal basis.

Proof. See, for example, Chapter 6.4 Theorem 9’ in [5].

The following allows us to consider such a basis to be contained in W :

Proposition 2.1.3. There exists a countable orthonormal basis for H contained in W .

Proof. Since H is separable (in the topological sense), and W ⊂ H is a proper dense subset,

it follows that W is separable. By definition, this means that W contains a countable dense

subset {an} ⊂ W . By applying the Gram-Schmidt process to the linearly independent

elements in this subset, we obtain an orthonormal sequence {en} ⊂ W . Now

span{an} = span{en} ⊂ W,

and by taking closures we see that span{en} is dense in H. By Lemma 2.1.1, this shows that

{en} is a countable orthonormal basis.

We now state basic facts in Hilbert space theory which still hold on dense subspaces.

Proposition 2.1.4. Let T ∈ BA(W ). Then Im(T )⊥ = Ker(T ∗).

Proof. First we show Im(T )⊥ ⊂ Ker(T ∗). Let y ∈ Im(T )⊥. Then, for any x ∈ W , we have

〈T (x), y〉 = 0. Then 〈x, T ∗(y)〉 = 〈T (x), y〉 = 0. By the nondegeneracy of the inner product,

it follows that T ∗(y) = 0. Hence y ∈ Ker(T ∗).

Showing Ker(T ∗) ⊂ Im(T )⊥ is analagous. Let y ∈ Ker(T ∗). Then 〈x, T ∗(y)〉 = 0 for all

x ∈ W , and hence 〈T (x), y〉 = 0 for all x ∈ W , which implies y ∈ Im(T )⊥.

Proposition 2.1.5. If T ∈ BA(W ) is normal, then T and T ∗ have the same kernel.
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Proof. We will show Ker(T ) ⊂ Ker(T ∗), and the other direction is completely analagous.

Let x ∈ Ker(T ). Then T (x) = 0, and since T ∗T (x) = TT ∗(x) = 0, it follows that T ∗(x) ∈

Ker(T ).

Now let y ∈ W . We claim that 〈y, T ∗(x)〉 = 0, and hence T ∗(x) = 0 implying x ∈

Ker(T ∗). To prove the claim, first suppose y ∈ Ker(T ). Then 〈y, T ∗(x)〉 = 〈T (y), x〉 = 0. On

the other hand, suppose y 6∈ Ker(T ). Recall that the kernel of a continuous linear operator

on a normed vector space is closed, so Ker(T ) is closed. But then y is orthogonal to Ker(T ),

and since T ∗(x) ∈ Ker(T ) by the previous paragraph, it follows that 〈y, T ∗(x)〉 = 0.

Section 2.2

The Algebra BA(W )

Recall that the set B(H) of bounded linear operatorsH → H naturally posseses the structure

of a C∗-algebra by taking the ∗-operation to be “taking adjoints” and the topology to be the

operator norm topology. Furthermore, every closed subalgebra of B(H) which is also closed

under adjoints is also a C∗-algebra (see the remarks preceding Theorem 4.27 in [2]).

Proposition 2.2.1. Any T ∈ B(W ) has a unique extension T̃ ∈ B(H). Moreover, ‖T‖ =

‖T̃‖.

Proof. We begin by defining this extension. Let x ∈ H. Since W ⊂ H is dense, there exists

a sequence {xn} converging (in H) to x. We claim {T (xn)} is also a convergent sequence.

To see this, note that, for all n,m > N ,

‖T (xn)− T (xm)‖ = ‖T (xn − xm)‖ ≤ ‖T‖‖xn − xm‖,

which shows that {T (xn)} is Cauchy, hence convergent by the completeness of Hilbert spaces.
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Finally, define

T̃ (x) = lim
n→∞

T (xn).

We now verify the validity of this definition.

Well-defined: Write y = limn→∞ T (xn). We need to show that if {x′n} ⊂ W is another

sequence converging to x, then limn→∞ T (x′n) = y. Since xn − x′n → 0, we know from 2.2

that ‖T (xn) − T (x′n)‖ → 0, and so T (xn) − T (x′n) → 0. This implies limn→∞ T (x′n) =

limn→∞ T (xn) = y as desired.

An extension: Given v ∈ W , we wish to show T̃ (v) = T (v). But this is immediate if we

just take the sequence {xn} in the definition above to be the constant sequence {vn}, where

each vn = v.

Linear: Follows from the linearity of limits.

Bounded: To see this, calculate

‖T̃ (x)‖ =‖ lim
n→∞

T (xn)‖ = lim
n→∞

‖T (xn)‖

≤ lim
n→∞

‖T‖‖xn‖ = ‖T‖‖ lim
n→∞

xn‖

=‖T‖‖x‖ <∞,

where we have repeatedly used the continuity of the norm.

Norm preserving: The above calculation shows that ‖T̃‖ ≤ ‖T‖. In detail, let

C = {c ≥ 0 : ‖T̃ (x)‖ ≤ c‖x‖ ∀x ∈ H}.

Then ‖T‖ ∈ C, but T̃ = inf(C). Now, let

C ′ = {c ≥ 0 : ‖T (v)‖ ≤ c‖v‖ ∀v ∈ W}.
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Since T̃ is an extension of T , C ⊂ C ′. Thus ‖T‖ ≤ ‖T̃‖, since

‖T‖ = inf(C ′) ≤ inf(C) = ‖T̃‖.

Combining both inequalities gives us ‖T‖ = ‖T̃‖.

Corollary 2.2.2. The C∗-algebra structure on B(H) determines a natural (unital) ∗-algebra

structure on BA(W ).

Corollary 2.2.3. The completion C∗(W ) := BA(W ) ⊂ B(H) is a C∗-algebra.

Proposition 2.2.4 (properties of extensions). For T ∈ B(W ), let T ′ be its unique extension

to H. Then:

(a) (T − λI)′ = T ′ − λI.

(b) (T ∗)′ = (T ′)∗.

(c) If T−1 ∈ B(W ), then (T−1)′ = (T ′)−1.

Proof.

(a) Let x ∈ H and {wn} ⊂ W a sequence converging to x. Then

(T − λI)′(x) = lim
n→∞

(T − λI)(wn) = lim
n→∞

(T (wn)− λwn) = T ′(x)− λx = (T ′ − λI)(x).

(b) It suffices to show that for any x, y ∈ H, we have

〈T ′(x), y〉 = 〈x, (T ∗)′(y)〉.

Let {xn}, {yn} ⊂ W be sequences converging to x and y, respectively. Then

〈T ′(x), y〉 =〈 lim
n→∞

T (xn), lim
m→∞

ym〉

8



= lim
n→∞

lim
m→∞

〈T (xn), ym〉

= lim
n→∞

lim
m→∞

〈xn, T ∗(ym)〉

=〈 lim
n→∞

xn, lim
m→∞

T ∗(ym)〉

=〈x, (T ∗)′(y)〉.

(c) Let x ∈ H, and let {wn} ⊂ W be a sequence converging to x. Then

T ′((T−1)′(x)) = T ′( lim
n→∞

T−1(wn)) = lim
n→∞

T ′(T−1(wn)).

Since T−1 ∈ B(W ) and wn ∈ W , we have that T−1(wn) ∈ W and so T ′(T−1(wn)) =

T (T−1(wn)) = wn.. Hence

T ′((T−1)′(x)) = lim
n→∞

wn = x.

Conversely, a similar argument shows (T−1)′(T ′(x)) = x, and so (T−1)′ = (T ′)−1.

Proposition 2.2.5. If T ∈ BA(W ) is normal, then its extension T ′ ∈ B(H) is normal.

Proof. We need to show that for any x ∈ H, we have an equality T ′((T ′)∗(x)) = (T ′)∗(T ′(x)).

By Proposition 2.2.4, this is equivalent to showing T ′((T ∗)′) = (T ∗)′(T ′(x)). Let {wn} ⊂ W

be a sequence converging to x. Then

T ′((T ∗)′(x)) =T ′( lim
n→∞

T ∗(wn)) = lim
n→∞

T ′T ∗(wn)

= lim
n→∞

TT ∗(wn) = lim
n→∞

T ∗T (wn)

= lim
n→∞

(T ∗)′(T ′(wn)) = (T ∗)′( lim
n→∞

T ′(wn))

9



=(T ∗)′(T ′(x)).
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Chapter 3

Spectral Theory

Section 3.1

Introduction

We introduce spectral theory here in the more general context of (not necessarily complete)

normed vector spaces X. We write I for the identity operator.

Let U ⊂ X , and let T : U → X be a linear operator.

Definition 3.1.1. λ ∈ C is called regular if the following conditions hold:

R1. (T − λI)−1 exists.

R2. (T − λI)−1 is bounded.

R3. (T − λI)−1 has a dense (in X) domain, i.e. Im(T − λI) is dense in X.

Definition 3.1.2. The set of regular values is called the resolvent set of T , and is denoted

ρ(T ).

Definition 3.1.3. The function RT mapping λ 7→ (T − λI)−1 is callend the resolvent func-

tion.

11



Definition 3.1.4. The spectrum of T is defined as σ(T ) := C \ ρ(T ).

Remark 3.1.5. What we have defined above is the “operator spectrum” as presented in,

for example, Chapter 7.2 in [4]. It is apparently defined specifically with regards to a linear

operator, and makes no reference to the algebra to which that operator belongs. On the

other hand, for a (complex) unital algebra A we can define the “algebraic spectrum” of an

element a ∈ A:

σA(a) := {λ ∈ C : (x− λ1A)−1 6∈ A},

i.e. the set of λ ∈ C for which x− λ1A is not invertible in A.

If X is a Banach space, then the operator spectrum of a bounded linear operator T :

X → X coincides with the algebraic spectrum of T ∈ B(X).

First suppose λ is regular. Then (T−λI)−1 extends uniquely to a bounded linear operator

X → X by Proposition 2.2.1. Hence (T − λI)−1 ∈ B(X) and λ 6∈ σB(X)(T ) according to the

definition above. Conversely, suppose λ is such that (T − λI)−1 ∈ B(X). Then immediately

λ is regular.

Also for Banach spaces, the resolvent set is sometimes defined as

ρ(T ) = {λ ∈ C : (T − λ1) is bijective}.

This is equivalent to Definition 3.1.2. To see this, first suppose T − λI is bijective. Then by

the bounded inverse theorem (e.g. 4.12-2 in [4]), we get that (T − λ1)−1 is also bounded.

Thus λ is regular. Conversely, suppose λ is regular. Then as above, (T − λI)−1 extends

uniquely to a bounded linear operator X → X, so in particular (T − λ1) is bijective.

Remark 3.1.6. For non-Banach spaces, the algebraic and operator spectra may differ.

Consider the Hilbert space H = L2[a, b] where 0 < a < b, and consider the proper dense

subset of polynomials P [a, b] (it is dense by the Weierstrass approximation theorem, see e.g.
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[7]).

Consider the self adjoint multiplication operator T = Mx ∈ BA(W ) ⊂ B(H). Now

T−1 = M1/x ∈ C[a, b] ⊂ H, however T−1 6∈ BA(W ) since, for example, 1
x
· 1 = 1

x
is not

a polynomial, hence T−1 does not preserve W . This shows that 0 ∈ σBA(W )(T ). But we

claim 0 6∈ σ(T ) with respect to W . It suffices to show 0 is regular (Definition 3.1.1). We

have already shown T−1 exists, and it is bounded because it is a continuous function with

compact domain. Its range is dense by the Müntz-Szász theorem (see again [7]). Thus 0 is

regular, hence 0 6∈ σ(T ).

In fact, for analagous reasons as the case λ = 0, we can see that σBA(W )(T ) = C. Also,

λ fails to be a regular value of T ∈ BA(W ) if and only if T − λI is not invertible, which

occurs only when λ ∈ [a, b]. The same is true regarding T ∈ B(H), and so σ(T ) = [a, b] on

both BA(W ) and B(H).

The spectrum of a linear operator T can be decomposed as follows:

property of λ

λ belongs to:

R1 R2 R3

7 7 7 σp(T )

3 7 3 σc(T )

3 3 7

σr(T )

3 7 7

Remark 3.1.7. R2 and R3 can only be satisfied if R1 is satisfied.

Definition 3.1.8. σ(T ) can be decomposed into the following disjoint sets:

• the point spectrum, denoted σp(T ).
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• the continuous spectrum, denoted σc(T ).

• the residual spectrum, denoted σr(T ).

Definition 3.1.9. Let X be a Banach space, and T ∈ B(X). A scalar λ is called an

approximate eigenvalue of T if T − λI is not bounded below, i.e. there exists a sequence of

unit vectors (xn) such that Txn− λxn → 0. Such a sequence (xn) is called a Weyl sequence.

The set of approximate eigenvalues of T is denoted σap(T ).

Proposition 3.1.10. Approximate eigenvalue lie in the spectrum.

Proof. Let λ be an approximate eigenvalue, and (xn) a Weyl sequence. If T − λI is not

injective, then λ ∈ σp(T ) ⊂ σ(T ). So it suffices to consider the case when T −λI is injective.

In that case, suppose (T −λI)−1 is bounded (hence continuous). But then limn→∞ ‖xn‖ = 1

contradicts the computation

lim
n→∞

xn = lim
n→∞

(T − λI)−1(T − λI)xn

=(T − λI)−1 lim
n→∞

(T − λI)xn

=(T − λI)−1(0) = 0.

In other words, if λ satisfies R1 then it fails R2. Thus λ ∈ σ(T ).

Corollary 3.1.11. σp(T ) ∪ σc(T ) ⊂ σap(T ).

Remark 3.1.12. Every eigenvalue is an approximate eigenvalue by considering the Weyl

sequence to be constant, with each term equal to the (normalization of) a chosen eigenvector.

Remark 3.1.13. It is still possible for approximate eigenvalues to be in the residual spec-

trum. Consider `2, and the operator

T (x1, x2, . . . ) = (0, x1,
x2
2
,
x3
3
, . . . ).

14



We claim 0 ∈ σr(T ) ∩ σap(T ).

First let us show that it is even in the spectrum. That is, for λ = 0, T − λI = T is not

invertible. We can explicitly determine that

T−1(x1, x2, . . . ) = (x2, 2x3, 3x4 . . . ).

This is not bounded, as ‖T−1(en)‖ = n− 1→∞.

Next we will show 0 ∈ σr(T ). We need to show that 0 6∈ σp(T ) and 0 6∈ σc(T ). By

inspecting its definition we can see that T is injective, so 0 6∈ σp(T ). Also, Im(T ) ⊂ `2 is

not dense. To see this, consider the element e1 6∈ Im(T ). For any x ∈ Im(T ), we have that

|x− e1| ≥ 1, and so no sequence in Im(T ) converges to e1. Thus 0 6∈ σc(T ).

Finally, we will show 0 ∈ σap(T ). We calculate that

‖T (en)− 0 · en‖ = ‖T (en)‖ =
1

n
→ 0,

and so {en} is a Weyl sequence for λ = 0.

Section 3.2

On Dense Subspaces

Let H be a separable Hilbert space, and W ⊂ H a proper dense subspace. Let T ∈ BA(W ),

and let T̃ ∈ B(H) be its unique extension.

The following are some preliminary observations, some of which will be strengthened in

the following sections.

Proposition 3.2.1.

(a) σ(T ) ⊃ σ(T̃ ).
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(b) σp(T ) ⊂ σp(T̃ ).

(c) σap(T ) ⊂ σap(T̃ ).

Proof.

(a) We show the contrapositive. Suppose λ is a regular value of T . Then (T −λI)−1 exists,

is bounded, and its domain is a dense subset of W , hence a dense subset of H. Thus by

Proposition 2.2.4 its unique extension to H is also bounded, and an inverse for T̃ −λI.

Thus λ is a regular value of T̃ .

(b) If λ ∈ σp(T ) then T −λI is not injective, i.e. there exists w ∈ W such that T (w) = λw.

Since T̃ is an extension of T , it must also be the case that T̃ (w) = λw, i.e. T̃ − λI is

not injective. Hence λ ∈ σp(T̃ ).

(c) A Weyl sequence in W for T will also be a Weyl sequence for T̃ .

Remark 3.2.2. An operator T ∈ BA(W ) may be injective but have non-injective extension

T ∈ B(H). Consider the Hilbert space `2, and let {ei} denote the standard orthonormal

basis. Consider the element

x1 = (1,
1

2
,
1

3
, . . . ) ∈ `2.

Let W = span{x1 ∪ {ei}i≥2}. We claim W ⊂ `2 is dense. It suffices to show there is a

sequence in W converging (in `2) to e1. Note that

(
x1 −

i∑
k=2

1

k
ek

)
i

=

(
x1, x1 −

1

2
e2, x1 −

1

2
e2 −

1

3
e3, . . .

)

is such a sequence. Now consider the projection operator

P (a1, a2, a3, . . . ) = (0, a2, a3, . . . ).
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Then ker(P ) = span{e1}, which does not lie inside W .

In the following subsections we turn the the question of spectral permanence. A deep

result of this kind is the following:

Theorem 3.2.3. Let A ⊂ B be unital C∗-algebras with the same unit, and let x ∈ A. Then

σA(x) = σB(x).

Proof. See Corollary 3.10 in [9].

Remark 3.2.4. Because of this, even if C∗(W ) 6= B(H), we at least have “algebraic”

spectral permanence. One should be cautious, however, to note that the algebras in the

above theorem have the same unit. A situation where this may not be the case is if we

consider the unitization of a C∗-subalgebra. For example, the compact operators K(H) are

a C∗-subalgebra of B(H) (see, for example, Example 3.3.10 in [9]), the subalgebra contains

a unit if and only if H is finite-dimensional. We may however formally attach a unit in a

minimal way while retaining the C∗-structure: this process is called unitization. It is not a

priori clear though, that this unit is the same unit in B(H). This turns out to be the case,

however, for example because the multiplier algebra of K(H) is B(H) (e.g. Example 13.2.4.2

in [3]).

Section 3.3

Permanence of Approximate Eigenvalues

Proposition 3.3.1. Consider an operator T ∈ B(H). For any λ ∈ σap(T ), there exists a

Weyl sequence for λ completely contained in W .

Proof. By assumption, there exists a Weyl sequence for λ in H, call it {xn}. Since W ⊂ H

is dense, we can construct a sequence {w′n} such that ‖xn−w′n‖ < 1
n
. Since ‖xn−w′n‖ → 0,

and ‖1− ‖w′n‖‖ ≤ ‖xn − w′n‖ (by the reverse triangle inequality), it follows that ‖w′n‖ → 1.
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We claim the normalization of {w′n}, which we will write as {wn}, is a Weyl sequence for

λ. To see this, let k > 0 be such that ‖(T − λI)(x)‖ ≤ k‖x‖ for all x (such a k exists since

T − λI is bounded). Then:

‖(T − λI)(wn)‖ =
1

‖w′n‖
‖(T − λI)(w′n)‖

≤ 1

‖w′n‖
(‖(T − λI)(w′n − an)‖+ ‖(T − λI)(an)‖)

≤ 1

‖w′n‖
(k‖w′n − an‖+ ‖(T − λI)(an)‖)

<
1

‖w′n‖

(
k

n
+ ‖(T − λI)(an)‖

)
.

Taking limits, we see that ‖(T − λI)(wn)‖ → 0 as desired.

Corollary 3.3.2. Consider an operator T ∈ BA(W ) and its unique extension T̃ ∈ B(H).

Then σap(T ) = σap(T̃ )

Proof. Proposition 3.3.1 implies that σap(T̃ ) ⊂ σap(T ). The reverse inclusion is discussed in

Proposition 3.2.1.

Section 3.4

Spectral Permanence for Normal Operators

Proposition 3.4.1. If T ∈ B(H) is normal, then σr(T ) = ∅.

Proof. It suffices to show that if λ ∈ σ(T ) \ σp(T ), then λ ∈ σc(T ). So let λ ∈ σ(T ) \ σp(T ).

By Remark 3.1.5, T − λI is injective (yet fails to be surjective). It suffices to show that

the E := Im(T − λI) is dense. Suppose otherwise.

We first observe that there must exist a nonzero z ∈ E⊥. To see this, note that E 6= H

by assumption that E is not dense. We then recall the fact from Hilbert spaces that any
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x ∈ H can be expressed as x = y + z for y ∈ E and z ∈ E⊥. Thus E
⊥

is nonempty, and so

E⊥ ⊃ E
⊥

is also nonempty.

Next, we claim that

E⊥ = Ker(T ∗ − λI) = Ker(T − λI).

This is because of the following facts:

• (Im(T ))⊥ = Ker(T ∗) (Proposition 2.1.4)

• Ker(T ) = Ker(T ∗) (Proposition 2.1.5)

All together, we have asserted the existence of a nonzero z ∈ Ker(T − λI), contradicting

the fact that T is injective.

Corollary 3.4.2. For a normal operator T ∈ B(H), σ(T ) = σap(T ).

Corollary 3.4.3. Consider an operator T ∈ BA(W ) and its unique extension T̃ ∈ B(H).

If T̃ is normal, then σap(T ) = σ(T̃ ).

Proof. By Corollary 3.4.2, we have that σ(T̃ ) = σap(T̃ ). Then Corollary 3.3.2 implies σ(T̃ ) =

σap(T ).
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Chapter 4

Approximation Results

Section 4.1

Approximation of Compact Operators

Again let H be a separable Hilbert space, and W ⊂ H a proper dense subset. Whenever

mentioned, a countable orthonormal basis for H will be assumed to lie in W (according to

Proposition 2.1.3, we lose no generality).

The main goal of this section is to show that every compact operator T ∈ H can be

approximated by operators in BA(W ), i.e. T can be expressed as a limit of operators in

BA(W ) with respect to the operator norm. Yet another way of viewing this is that K(H)

is an ideal of C∗(W ).

Definition 4.1.1. An operator T called compact if, for every bounded sequence {xn} ⊂ H,

the sequence {T (xn)} contains a convergent subsequence.

Proposition 4.1.2. The following are equivalent:

(a) T is compact (in the sense of Definition 4.1.1).

(b) T (B(0, 1)) is relatively compact, where B(0, 1) is the unit ball. In other words,
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T (B(0, 1)) is compact.

Proof. See Theorem 8.1-3 in [4].

We will write K(H) for the class of compact operators on H.

Proposition 4.1.3. K(H) is the unique proper closed 2-sided ideal of B(H). It is also a

∗-ideal.

Proof. See Corollary 5.11 in [2].

4.1.1. Finite Rank Operators

Definition 4.1.4. An operator T is called finite rank if it is bounded and its image is a

finite-dimensional vector space.

We will write F (H) for the set of finite rank operators on H. We say T ∈ F (W ) if T is

finite rank and T ∈ B(W ). Similarly, we write FA(W ) for the bounded, adjointable, finite

rank operators on W .

Lemma 4.1.5. F (H) ⊂ K(H).

Proof. Let T ∈ F (H), and let {xn} ⊂ H be a bounded sequence. Then {T (xn)} is also

bounded, and hence must contains a convergent subsequence by the Bolzano-Weierstrass

theorem.

For x, y ∈ H, we define the operator θx,y as follows:

θx,y(−) = 〈−, x〉y.

Proposition 4.1.6. If T ∈ F (H), write {ei}n1 for an orthonormal basis of Range(T). Then

there exist {zi}n1 ∈ H such that

T (x) =
n∑
i=1

〈x, zi〉ei =
n∑
n=1

θzi,ei .
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Proof. For {ei} as in the statement of the claim, we can write

T (x) =
n∑
i=1

ci(x)ei,

where each ci is a function H → C. First we check that the ci are linear:

n∑
i=1

ci(x+ y)ei = T (x+ y) = T (x) + T (y) =
n∑
i=1

(ci(x) + ci(y))ei,

which shows that ci(x+ y) = ci(x) + ci(y) for all i. Additionally, the ci are bounded:

|ci(x)| = ‖ci(x)ei‖ ≤ ‖
∑
i

ci(x)ei‖ = ‖T (x)‖ ≤ ‖T‖ · ‖x‖.

Since the ci are thus all bounded linear functionals, by the Riesz-Fréchet theorem there exists

zi ∈ H such that ci(x) = 〈x, zi〉. In other words,

T (x) =
n∑
i=1

〈x, zi〉ei =
n∑
i=1

θzi,ei ,

as desired.

Corollary 4.1.7. F (H) ⊂ span{θx,y : x, y ∈ H}.

Proposition 4.1.8. (θx,y)
∗ = θy,x

Proof. For a, b ∈ H,

〈θx,y(a), b〉 = 〈〈a, x〉y, b〉 = 〈a, x〉 · 〈y, b〉 = 〈y, b〉 · 〈a, x〉 = 〈a, 〈b, y〉x〉 = 〈a, θy,x(b)〉.

Corollary 4.1.9. If T ∈ F (H), then Rank(T ) = Rank(T ∗).
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Proof. By the Propositions 4.1.6 and 4.1.8, we can write

T (x) =
n∑
i=1

〈x, zi〉ei, T ∗x =
n∑
i=1

〈x, ei〉zi,

where {ei}n1 is an orthonormal basis for Range(T ). It suffices to show that the zi are linearly

independent. Suppose otherwise. Without loss of generality, assume z1 =
∑n

i=2 dizi. Then

{e1 + ei}n2 would span the range of T , since

T (x) =
n∑
i=1

〈x, zi〉ei

=〈x,
n∑
i=2

dizi〉e1 +
n∑
i=2

〈x, zi〉ei

=
n∑
i=2

〈x, (di + 1)zi〉(e1 + ei).

But the cardinality of the set {e1 + ei}n2 contradicts the assumption that {ei}n1 is a basis for

the Range(T ).

4.1.2. Projection Operators

For n > 0, the projection operator Pn ∈ B(H) with respect to the countable orthonormal

basis {ei} maps an element onto its first n components:

Pn(x) = Pn

(
∞∑
i=1

〈x, ei〉ei

)
=

n∑
i=1

〈x, ei〉ei.

Proposition 4.1.10 (basic facts about Pn).

(a) ‖Pn‖ = 1.

(b) Pn = P ∗n .

(c) Pn ∈ FA(W ).

23



Proof.

(a) Notice that ‖Pn(x)‖ ≤ ‖x‖ and ‖Pn(en)‖ = ‖en‖ = 1, and so ‖Pn‖ = 1.

(b) We calculate:

〈Pnx, y〉 = 〈
n∑
i=1

〈x, ei〉ei,
∞∑
j=1

〈y, ej〉ej〉 =
n∑
i=1

〈〈x, ei〉ei, 〈y, ei〉ei〉,

〈x, Pny〉 = 〈
∞∑
j=1

〈x, ej〉ej,
n∑
i=1

〈y, en〉en〉 =
n∑
j=1

〈〈x, ej〉ej, 〈y, ej〉ej〉.

(c) Im(Pn) is contained in the span of the {ei} ⊂ W , as is its adjoint by the previous fact.

Proposition 4.1.11. For any x ∈ H, we have that Pn(x)→ x.

Proof. We compute

‖Pn(x)− x‖2 =

∥∥∥∥∥
∞∑
i=1

〈Pn(x)− x, ei〉ei

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑
i=1

〈
n∑
j=1

〈x, ej〉 −
∞∑
k=1

〈x, ek〉ek, ei〉ei

∥∥∥∥∥
2

=

∥∥∥∥∥
∞∑
i=1

〈−
∞∑

k=n+1

〈x, ek〉ek, ei〉ei

∥∥∥∥∥
2

=

∥∥∥∥∥−
∞∑

i=n+1

〈x, ei〉ei

∥∥∥∥∥
2

=
∞∑

i=n+1

‖〈x, ei〉‖2. (4.1.12)

Pulling the sum out of the norm is justified since all summands are orthogonal. The right

hand side tends to 0 as n→∞ since ‖x‖ is finite.
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Lemma 4.1.13. On a compact subset K ⊂ H, we have that Pn → 1 uniformly (with respect

to the operator norm).

Proof. Since K is compact, we may cover it with finitely many
√
ε/2-balls. This means that

there is a finite set {x1, . . . , xN} ⊂ K such that for any x ∈ K there exists 1 ≤ k ≤ N such

that ‖x− xk‖ <
√
ε/2.

If we fix x ∈ K and choose an xk as above, then, recalling Equation 4.1.12,

‖Pn(x)− x‖2 =
∞∑

i=n+1

‖〈x, ei〉‖2 =
∞∑

i=n+1

‖〈x− xk + xk, ei〉‖2

=
∞∑

i=n+1

‖〈x− xk, ei〉+ 〈xk, ei〉‖2

≤
∞∑

i=n+1

(‖〈x− xk, ei〉‖+ ‖〈xk, ei〉‖)2

≤
∞∑

i=n+1

‖〈x− xk, ei〉‖2 +
∞∑

i=n+1

‖〈xk, ei〉‖2

≤‖x− xk‖2 +
∞∑

i=n+1

‖〈xk, ei〉‖2

≤ ε
2

+
∞∑

i=n+1

‖〈xk, ei〉‖2.

Since there are only finitely many possible xk, we get that, for any x ∈ K,

‖Pn(x)− x‖2 ≤ ε

2
+ max

k

∞∑
i=n+1

‖(xk, ei)‖2.

Taking n→∞, we get the desired convergence. It does not depend on x, so the convergence

is uniform.

Corollary 4.1.14. If T ∈ K(H), then PnT → T uniformly (with respect to the operator

norm).

Proof. Since T is compact, T (B(0, 1)) is compact (by Proposition 4.1.2), where B(0, 1) is

25



the unit ball. Then we can apply Lemma 4.1.13:

lim
n→∞

‖PnT − T‖ = lim
n→∞

sup
‖x‖≤1

‖PnT (x)− T (x)‖

= sup
‖x‖≤1

lim
n→∞

‖Pn(T (x))− T (x)‖

=0,

where we can interchange the supremum and limit since we are working on the compact

subspace T (B(0, 1)), and hence the convergence inside the norm is uniform. Thus, the

convergence PnT → T is uniform.

Corollary 4.1.15. If T ∈ K(H), then TPn → T uniformly (with respect to the operator

norm).

Proof. In the compact subspace B(0, 1), we have that Pn(x)− x→ 0 uniformly (by Lemma

4.1.13). Hence T (Pn(x)−x) converges uniformly, and a similar method as above of switching

the supremum and limit yields

lim
n→∞

‖TPn − T‖ = lim
n→∞

sup
‖x‖≤1

‖T (Pn(x)− x)‖ = sup
‖x‖≤1

lim
n→∞

‖T (Pn(x)− x)‖ = 0.

Corollary 4.1.16. If T ∈ K(H), then PnTPn → T uniformly (with respect to the operator

norm).

Proof. Observe that

‖PnTPn − T‖ =‖PnTPn − PnT + PnT − T‖

≤‖PnTPn − PnT‖+ ‖PnT − T‖

=‖Pn‖ · ‖TPn − T‖+ ‖PnT − T‖.
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By Corollaries 4.1.14 and 4.1.15, we get that ‖PnTPn−T‖ → 0, so the result follows. (Recall

from Proposition 4.1.10 that ‖Pn‖ = 1 for any n.)

Corollary 4.1.17. (PnTPn)∗ = (PnT
∗Pn).

Proof. (PnTPn)∗ = P ∗nT
∗P ∗n , and the result follows from the fact P ∗n = Pn (Proposition

4.1.10).

Corollary 4.1.18. PnTPn ∈ FA(W ).

Proof. This follows from the fact that Pn ∈ FA(W ) (by Propostion 4.1.10) and Corollary

4.1.17.

4.1.3. Approximation Result

Corollary 4.1.19. Every T ∈ K(H) is a limit of finite rank operators on Tn ∈ FA(W ).

Proof. {PnTPn} ⊂ FA(W ) (by Corollary 4.1.18) converges to T (by Corollary 4.1.16).

Proposition 4.1.20. K(H) is an ideal of C∗(W ).

Proof. K(H) ⊂ C∗(W ) by the previous result, and the ideal structure follows immediately

from the fact that K(H) is an ideal of B(H) (Proposition 4.1.3).

Section 4.2

Operators on the Span of an ON basis

Now consider the subspace W0 = span{en}. Then W0 ⊂ W ⊂ H and W0 ⊂ H is dense.

4.2.1. Compatability BA(W0) and BA(W )

Since BA(W ) ⊂ BA(H) = B(H), it is natural to ask whether BA(−) is “functorial” with

respect to inclusions. For example: is it true that BA(W0) ⊂ BA(W ), or BA(W ) ⊂

BA(W0)? The answer in both cases, interestingly, is not necessarily.
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Example 4.2.1 (BA(W ) 6⊂ BA(W0)). Let H = L2[0, 1]. Let W = C[0, 1] and W0 =

span{1, x, x2, . . . }. It is also well known that W ⊂ H is dense (e.g. Consequence (i) of

Lemma 4.9 in [6]). W0 ⊂ W is dense by the Weierstrass approximation theorem, hence W0

is a span of a (countable) orthonormal basis, e.g. the Hermite polynomials. Thus we satisfy

the conditions we want.

Consider the multiplication operator Mex . It preserves W since the product of two

continuous functions is continuous, and is also self-adjoint, so Mex ∈ BA(W ). However,

1 · ex = ex is not in the span of the polynomials, and so Mex 6∈ BA(W0).

Example 4.2.2 (BA(W0) 6⊂ BA(W )). Let H and W0 be as in the previous example, but

now let

W = span(W0 ∪ {simple functions in H}).

W0 is already dense in H by our previous remarks, so W is as well and we satisfy the

condition we want.

But consider the self-adjoint multiplication operator Mx. Then Mx ∈ BA(W0). But

consider the simple function f = 1[0,1/3]+1[2/3,1]. Then xf(x) is neither simple nor continuous

(and since it is not continuous, it is not spanned by the polynomials). Hence Mx 6∈ BA(W ).

4.2.2. Density of BA(W0) ⊂ B(H)

The tractable linear structure of W0 allows us to prove the following result, due to [8]. The

idea is to show that, given any T ∈ B(H), we can find a B ∈ BA(W0) that is arbitarily close

to T (with respect to the operator norm).

Fix a nonzero A ∈ B(H). Let Qn := I − Pn, i.e.

Qn(x) =
∞∑

i=n+1

〈x, ei〉ei.

Since A(en) and A∗(en) have finite norm, for any ε > 0 and n ≥ 1 we can find kn > n such
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that

‖QknA(en)‖ ≤ ε

3 · 2n/2
and ‖QknA

∗(en)‖ ≤ ε

3 · 2n/2
.

Now define the operator R ∈ B(H) as follows:

R(x) =
∞∑
n=1

(
〈x, en〉QknA(en) + 〈x,QknA

∗(en)〉en
)
.

Proposition 4.2.3. R ∈ B(H).

Proof. By the Cauchy-Schwartz inequality, we have on the one hand

∥∥∥∥∥
∞∑
n=1

〈x, en〉QknA(en)

∥∥∥∥∥ ≤
∞∑
n=1

‖〈x, en〉QknA(en)‖ =
∞∑
n=1

|〈x, en〉| · ‖QknA(en)‖

≤
∞∑
n=1

‖x‖ · ε

3 · 2n/2
≤ ‖x‖

(
∞∑
n=1

( ε

3 · 2n/2
)2)1/2

=
ε‖x‖

3
·

(
∞∑
n=1

2−n

)1/2

=
ε‖x‖

3
.

On the other hand,

∥∥∥∥∥
∞∑
n=1

〈x,QknA
∗(en)〉en

∥∥∥∥∥ =

(
∞∑
n=1

|〈x,QknA
∗(en)〉|

)1/2

≤ ‖x‖ ·

(
∞∑
n=1

‖QknA
∗(en)‖

)1/2

≤ε‖x‖
3

by an analagous argument. Combining these inequalities shows that R is bounded:

‖R(x)‖ =

∥∥∥∥∥
∞∑
n=1

(
〈x, en〉QknA(en) + 〈x,QknA

∗(en)〉en
)∥∥∥∥∥

≤

∥∥∥∥∥
∞∑
n=1

〈x, en〉QknA(en)

∥∥∥∥∥+

∥∥∥∥∥
∞∑
n=1

〈x,QknA
∗(en)〉en

∥∥∥∥∥
≤ε‖x‖

3
+
ε‖x‖

3

29



<ε‖x‖.

Proposition 4.2.4.

R∗(x) =
∞∑
n=1

(
〈x,QknA(en)〉en + 〈x, en〉QknA

∗(en)
)
.

Proof. One the one hand,

〈
∞∑
n=1

〈x, en〉QknA(en), y〉 =
∞∑
n=1

〈x, en〉 · 〈QknA(en), y〉

=
∞∑
n=1

〈x, 〈y,QknA(en)〉en〉

and so (
∞∑
n=1

〈−, en〉QknA(en)

)∗
=
∞∑
n=1

〈−, QknA(en)〉en.

On the other hand,

〈
∞∑
n=1

〈x,QknA
∗en〉en, y〉 =

∞∑
n=1

〈x,QknA
∗en〉 · 〈en, y〉

=
∞∑
n=1

〈x, 〈y, en〉QknA
∗en〉

and so (
∞∑
n=1

〈−, QknA
∗en〉en

)∗
=
∞∑
n=1

〈−, en〉QknA
∗(en).

Summing the two gives the desired result.

Theorem 4.2.5. BA(W0) ⊂ B(H) is dense.

Proof. Let B = A − R. The fact that B ∈ B(H) follows from Proposition 4.2.3. We claim
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that ‖A−B‖ ≤ ε and B ∈ BA(W0). With regards to the first claim,

‖A−B‖ = ‖R‖ < ε

by the previous calculation that R is bounded.

To show B ∈ BA(W0), we first show B(W0) ⊂ W0. Since W0 is the span of the {en}, it

suffices to show that B(en) ∈ W0 for all n:

B(en) =A(en)−R(en)

=A(en)−

(
∞∑
i=1

(
〈en, ei〉QkiA(ei) + 〈en, QkiA

∗(ei)〉ei
))

=A(en)−QknA(en)−
n−1∑
i=1

〈en, QkiA
∗(ei)〉ei

=(I −Qkn)A(en)−
n−1∑
i=1

〈en, QkiA
∗(ei)〉ei

=PknA(en)−
n−1∑
i=1

〈en, QkiA
∗(ei)〉ei ∈ W0,

where in the third line the sum cuts off at n becuase Qki projects onto the {ej>ki}, hence

will vanish when taking an inner product with against an em≤ki .

All that remains is to show B∗(W0) ⊂ W0. Using Proposition 4.2.4, we carry out an

analagous computation:

B∗(en) =A∗(en)−R∗(en)

=A∗(en)−

(
∞∑
i=1

(
〈en, QkiA(ei)〉ei + 〈en, ei〉QkiA

∗(ei)
))

=A∗(en)−QknA
∗(en)−

n−1∑
i=1

〈en, QkiA
∗(ei)〉ei
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=PknA
∗(en)−

n−1∑
i=1

〈en, QkiA
∗(ei)〉ei ∈ W0.

Hence B ∈ BA(W0).

Section 4.3

Example: BA(W ) ⊂ B(H) not Dense

We have seen that for proper dense subspaces W0 ⊂ H which are linear spans of an or-

thonormal basis, it is true that BA(W0) ⊂ BA(H) is dense. However, we have also seen

that, given an arbitrary proper dense subspace W ⊂ H and the linear span of an orthonor-

mal basis contained in it W0 ⊂ W , operators which preserve W0 need not preserve W , and

vice versa. Thus we might be pessimistic as to whether BA(W ) ⊂ B(H) is dense in general.

The purpose of this section is to provide such a counterexample.

The setup is the following: letH = `2 and W = `1 (W ⊂ H is dense because, for example,

the set of eventually 0 sequences is in both of them). The idea is to construct V ∈ B(H) such

that ‖T − V ‖ > 1/2 for all T ∈ BA(W ). In the following, {ei}∞1 will denote the canonical

orthonormal basis for `2.

The proof idea is due to [1], but executed and corrected here in full detail, in recognition

of the necessity of considering bounded adjointable operators on the subspace rather than

simply bounded operators.

4.3.1. An Orthogonal Sequence: (ξn)

Let

ξn := 2−n/2
2n−1∑
i=0

e2n+i.
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Remark 4.3.1. We write the first few ξn explicitly:

ξ1 = 2−1/2·(0, 1, 1, 0, . . . )

ξ2 = 2−1·(0, 0, 0, 1, 1, 1, 1, 0 . . . )

ξ3 = 2−3/2·(0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, . . . )

Note 2−1/2 > 2−1 > 2−3/2 > . . . , i.e. 2−n/2 is a monotonically decreasing sequence.

Proposition 4.3.2. The ξn are mutually orthogonal in `2, i.e. 〈ξn, ξm〉 = 0 whenever n 6= m.

Proof. Assume, without loss of generality, that n < m. Then 2n + i < 2m for any 0 ≤ i ≤

2n− 1. (Indeed, even if m = n+ 1, the closest these values get is 2n + (2n− 1) = 2n+1− 1 =

2m − 1 < 2m.) We thus proceed as follows:

〈2−n/2
2n−1∑
i=0

e2n+i, 2
−m/2

2m−1∑
j=0

e2m+i〉 =2−n/2
2n−1∑
i=0

〈e2n+i, 2−m/2
2m−1∑
j=0

e2m+i〉

=2−n/2
2n−1∑
i=0

2−m/2
2m−1∑
j=0

〈e2m+j, e2n+i〉


=2−n/2

2n−1∑
i=0

2−m/2
2m−1∑
j=0

0


=0.

Proposition 4.3.3. For all n,

‖ξn‖p =


(

2
n(2−p)

2

)1/p
1 ≤ p <∞

2−n/2 p =∞
.
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Proof. Note

ξn =2−n/2
2n−1∑
i=0

e2n+i

=2−n/2 · (. . . , 0, 1, . . . , 1︸ ︷︷ ︸
2n copies

, 0, . . . )

=(. . . , 0, 2−n/2, . . . , 2−n/2︸ ︷︷ ︸
2n copies

, 0, . . . ),

and so

‖ξn‖pp = 2n · (2−n/2)p = 2
n(2−p)

2

for 1 ≤ p <∞, and ‖ξn‖∞ = 2−n/2.

Corollary 4.3.4.

‖ξn‖1 = 2n/2

‖ξn‖2 = 1

Corollary 4.3.5.

lim
n→∞

‖ξn‖p =


∞ 1 ≤ p < 2,

1 p = 2,

0 p > 2

.

4.3.2. The Operator V

Now define the operator

V (x) := V

(
∞∑
n=1

〈x, en〉en

)
=
∞∑
n=1

〈x, en〉ξn
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for all x ∈ `2.

Proposition 4.3.6. V (ei) = ξi for all i.

Proof.

V (ei) =
∞∑
n=1

〈ei, en〉ξn = 〈ei, ei〉ξn = ξn.

Proposition 4.3.7. V is a (partial) isometry. In particular, V ∈ B(`2).

Proof. For any x ∈ `2,

‖V (x)‖22 =

∥∥∥∥∥
∞∑
n=1

〈x, en〉ξn

∥∥∥∥∥
2

2

=
∞∑
n=1

‖〈x, en〉ξn‖22,

by the Pythagorean theorem, since the ξn are mutually orthonormal,

=
∞∑
n=1

|〈x, en〉|2

=‖x‖22

by Parseval’s identity.

Proposition 4.3.8. For T ∈ B(W ), if ‖T − V ‖2 < 1/2, then

2n−1∑
i=0

|〈e2n+i, T en〉| ≥
2n/2

2
.
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Proof. We first show that

2n−1∑
i=0

|〈e2n+i, T (en)〉| ≥ 2n/2 −

∣∣∣∣∣
2n−1∑
i=0

(
〈e2n+i, T (en)〉 − 2−n/2

)∣∣∣∣∣ .
To see this, first observe that

∣∣∣∣∣
2n−1∑
i=0

(
〈e2n+i, T (en)〉 − 2−n/2

)∣∣∣∣∣ =

∣∣∣∣∣
(

2n−1∑
i=0

〈e2n+i, T (en)〉

)
− 2n/2

∣∣∣∣∣
≥

∣∣∣∣∣∣∣
2n−1∑
i=0

〈e2n+i, T (en)〉
∣∣− |2n/2|∣∣∣∣∣

=

∣∣∣∣∣2n/2 − ∣∣
2n−1∑
i=0

〈e2n+i, T (en)〉
∣∣∣∣∣∣∣

≥2n/2 −

∣∣∣∣∣
2n−1∑
i=0

〈e2n+i, T (en)〉

∣∣∣∣∣ .
Therefore,

2n/2 −

∣∣∣∣∣
2n−1∑
i=0

(
〈e2n+i, T (en)〉 − 2−n/2

)∣∣∣∣∣ ≤2n/2 −

(
2n/2 −

∣∣∣∣∣
2n−1∑
i=0

〈e2n+i, T (en)〉

∣∣∣∣∣
)

=

∣∣∣∣∣
2n−1∑
i=0

〈e2n+i, T (en)〉

∣∣∣∣∣
≤

2n−1∑
i=0

|〈e2n+i, T (en)〉|

as desired.

Now we will show that

2−n/2

∣∣∣∣∣
2n−1∑
i=0

(
〈e2n+i, T (en)〉 − 2−n/2

)∣∣∣∣∣ ≤ ‖T (en)− ξn‖2.
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We calculate

2−n/2

∣∣∣∣∣
2n−1∑
i=0

(
〈e2n+i, T (en)〉 − 2−n/2

)∣∣∣∣∣ =

∣∣∣∣∣
2n−1∑
i=0

(
2−n/2〈e2n+i, T (en)〉 − 2−n

)∣∣∣∣∣
=|〈ξn, T (en)〉 − 1|

=|〈ξn, T (en)〉 − 〈ξn, ξn〉|

=|〈ξn, T (en)− ξn〉|

≤‖T (en)− ξn‖2,

where we have used the Cauchy-Schwartz inequality and the fact that ‖ξn‖2 = 1.

We also claim that

‖T (en)− ξn‖2 ≤ 1/2.

This is because ‖T −V ‖2 < 1/2 by assumption, and since en is unit size (in the 2-norm), we

get from the properties of the norm that ‖T (en)− V (en)‖2 = ‖T (en)− ξn‖2 < 1/2.

Pulling it all together, we calculate that

2n−1∑
i=0

|〈e2n+i, T (en)〉| ≥2n/2 −

∣∣∣∣∣
2n−1∑
i=0

(
〈e2n+i, T (en)〉 − 2−n/2

)∣∣∣∣∣
=2n/2

(
1− 2−n/2

∣∣∣∣∣
2n−1∑
i=0

(
〈e2n+i, T (en)〉 − 2−n/2

)∣∣∣∣∣
)

≥2n/2(1− ‖T (en)− ξn‖2)

≥2n/2
(

1− 1

2

)
=

2n/2

2
.
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4.3.3. Two Sequences

Proposition 4.3.9. There exist two nonnegative, monotonically increasing sequences of

integers (α)∞0 , (β)∞1 such that

∑
i 6∈[αr−1,αr−1]

|〈ei, T (eβr)〉| < 1

for all r ∈ N. We can pick these such that α0 = β1 = 1 and βi ≥ i2.

Proof. We will construct the two sequences inductively. Let α0 = β1 = 1. Since eβr ∈ `1,

T (ebr) ∈ `1 and

‖T (eβr)‖1 =
∞∑
i=1

|〈ei, T (eβr)〉| <∞.

Therefore, there must exist α1 > 1 such that all coordinates of T (eβr) outside the range

[α0, α1] sum to less than 1. In other words, there must be an α1 > α0 such that

∑
i 6∈[α0,α1]

|〈ei, T (eβr)〉| < 1.

For the induction step, suppose we have constructed (α)r0 and (β)r1. First we will construct

βr+1. Note that eq ∈ `1 for any q ∈ N, so T (eq) and T ∗(eq) are both in `1. Thus

αr−1∑
i=1

|〈ei, T (eq)〉| =
αr−1∑
i=1

|〈T ∗(ei), eq〉|.

The expression 〈T ∗(ei), eq〉 picks out the qth coordinate of an element in `1. Therefore, we

may pick q = βr+1 > βr such that

max
i∈[1,αr−1]

|〈T ∗(ei), eq〉| <
1

2αr
.
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This will ensure that
αr−1∑
i=1

|〈ei, T (eβr+1)〉| <
1

2
.

Nothings prevents us from picking such that βr+1 ≥ (r + 1)2 as well.

Outside of [1, αr − 1], which is the range [αr,∞), the sum is still finite. Thus we can

once again find an upper bound αr+1 > αr such that the above sum is < 1/2 on [αr+1,∞).

Pulling this all together, we have found αr+1 > αr such that

∑
i 6∈[αr,αr+1−1]

|〈ei, T (eβr+1)〉| < 1.

This completes the induction step.

4.3.4. Failure to Approximate V

Theorem 4.3.10. Taking H = `2 and W = `1 as above, BA(W ) ⊂ B(H) is not dense.

Proof. Suppose there exists T ∈ BA(`1) such that ‖T − V ‖2 < 1/2. Consider the element

w =
∞∑
n=1

1

n2
eβk ∈ `1.

This element is indeed in `1 as
∑

n 1/n2 = π/6 <∞.

Our first claim is that the series

∞∑
n=1

(
2βn/2

2n2
− π2

6

)

diverges. Indeed,

lim
n→∞

(
2βn/2

2n2
− π2

6

)
→∞

since in particular βn ≥ n2.
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Now

‖Tw‖1 =
∑
i

∣∣∣∣∣
〈
ei,
∑
k

1

k2
T (eβk)

〉∣∣∣∣∣
=
∑
n

αn−1∑
i=αn−1

∣∣∣∣∣
〈
ei,
∑
k

1

k2
T (eβk)

〉∣∣∣∣∣
=
∑
n

αn−1∑
i=αn−1

∣∣∣∣∣ 1

n2
〈ei, T (eβn)〉+

∑
k 6=n

1

k2
〈ei, T (eβk)〉

∣∣∣∣∣
≥
∑
n

αn−1∑
i=αn−1

(∣∣∣∣ 1

n2
〈ei, T (eβn)〉

∣∣∣∣−
∣∣∣∣∣∑
k 6=n

1

k2
〈ei, T (eβk)〉

∣∣∣∣∣
)
,

by an application of the triangle inequality,

≥
∑
n

αn−1∑
i=αn−1

(
1

n2
|〈ei, T (eβn)〉| −

∑
k 6=n

1

k2
|〈ei, T (eβk)〉|

)

=
∑
n

 αn−1∑
i=αn−1

1

n2
|〈ei, T (eβn)〉| −

αn−1∑
i=αn−1

∑
k 6=n

1

k2
|〈ei, T (eβk)〉|


=
∑
n

 αn−1∑
i=αn−1

1

n2
|〈ei, T (eβn)〉| −

∑
k 6=n

1

k2

αn−1∑
i=αn−1

|〈ei, T (eβk)〉|

 ,

by Tonelli’s theorem for series,

≥
∑
n

 αn−1∑
i=αn−1

1

n2
|〈ei, T (eβn)〉| −

∑
k 6=n

1

k2

 ,

by Proposition 4.3.9, since k 6= n,

=
∑
n

 αn−1∑
i=αn−1

1

n2
|〈ei, T (eβn)〉| − π2

6
+

1

n2


=
∑
n

 1

n2

αn−1∑
i=αn−1

|〈ei, T (eβn)〉| − π2

6
+

1

n2


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≥
∑
n

(
1

n2

(∑
i

|〈ei, T (eβn)〉| − 1

)
− π2

6
+

1

n2

)
,

by Proposition 4.3.9,

≥
∑
n

(
1

n2

∑
i

|〈ei, T (eβn)〉| − π2

6

)

≥
∑
n

 1

n2

2βn+1−1∑
i=2βn

|〈ei, T (eβn)〉| − π2

6


=
∑
n

 1

n2

2βn−1∑
i=0

|〈e2βn+i, T (eβn)〉| − π2

6


≥
∑
n

(
2βn/2

2n2
− π2

6

)
,

by Proposition 4.3.8,

=∞.

This shows that ‖T (w)‖1 is bounded below by a divergent series, hence ‖T (w)‖1 is also

divergent. This slight abuse of notation nonetheless demonstrates that T (w) 6∈ `1. But this

is a contradiction since T ∈ BA(`1). Hence ‖T − V ‖ > 1/2 for all T ∈ BA(`1).
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Chapter 5

Future Directions

We have shown BA(`1) ⊂ B(`2) is not dense, and would like to extend these results to `p

for 1 < p < 2. We conjecture that BA(`p) ⊂ B(H) is dense. In the case of `1, we have the

following nontrivial extension:

0→ K(`2)→ C∗(`1)→ C∗(`1)

K(`2)
→ 0.

One could apply K-theory to this sequence to see whether the K-theory detects the fact

that C∗(`1) 6= B(`2). More generally, one can compare properties of the Calkin algebra

B(`2)/K(`2) to the properties of this distinct algebra C∗(`1)/K(`2).

Another direction could be to consider weaker topologies. For the span of an orthonor-

mal basis W0, is it still true that BA(W0) ⊂ B(H) is dense with respect to the strong/weak

operator topologies? Furthermore, it is known that the commutant of a self-adjoint sub-

space of operators is a von Neumann algebra, so BA(W )′ is a von Neumann algebra. One

could compute this, and, if it turns out to be nontrivial, apply methods of W ∗-algebras to

BA(W )′. One could also approach the question of density of BA(W ) by computing the

double commutant BA(W )′′; the theory shows that if BA(W ) = BA(W )′′ then BA(W ) is

closed in the strong/weak operator topologies, hence closed in the operator norm topology.
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Then if BA(W ) ( B(H), it is certainly not dense.

Finally, one could expand on the spectral theory of BA(W ) developed here, or consider

the spectral theory of a nontrival C∗(W ). How much of the spectral theory on B(H) can be

recovered, and does the spectrum/resolvent “see” certain properties of BA(W )?
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