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1 motivation

Lebesgue integration can be thought of as the “completion” of Riemann integration. This is
because Riemann integrals do not behave well at the limit, whereas Lebesgue integrals do.

Example 1.1 (uniform limit of Riemann integrable functions is Riemann integrable). TODO

Example 1.2 (pointwise limit of Riemann integrable functions may fail to be Riemann
integrable). TODO

2 Lebesgue measure

2.1 Tao’s approach

This approach essentially takes Littlewood’s first principle to be its definition: it definines
“Lebesgue outer measure” m∗ and then calls a set E Lebesgue measurable if, for any ε > 0,
we can find an open set U such that mast(U \ E) < ε, and defines the Lebesgue measure of
E in that case to be equal to m∗(E).

Definition 2.1. [Lebesgue outer measure] TODO

So in some sense, m∗(E) is the smallest area we can get by covering E with countably many
boxes (actually the infimum, of course).

Definition 2.2. [Lebesgue measure] TODO

3 properties of measurability

3.1 outer measure properties

Proposition 3.1 (axioms of outer measures). Let m∗ be an outer measure.

1. m∗(∅) = 0

2. (monotonicity)
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3. (countable subadditivity) If (En) is a countable sequence of sets, then m∗(
⋃
nEn) ≤∑

nm
∗(En).

Proposition 3.2 (outer measure of almost disjoint boxes). Let E =
⋃
nBn be the countable

union of almost disjoint boxes (their interiors are all disjoint). Then

m∗(E) =
∑
n

|Bn|.

Proposition 3.3 (Lebesgue (outer) measure of open sets). Let U ⊂ Rd be an open set.
Then

m∗(U) = sup
E⊂U

m(E)

where E is an elementary set (finite union of boxes).

In other terminology, this is saying that the Lebesgue outer measure of open sets is equal to
the Jordan inner measure of open sets.

Proposition 3.4 (Lebesgue outer measure of an arbitrary set). Let A ⊂ Rd. Then

m∗(A) = inf
U⊃A

m∗(U),

where the U are open.

3.2 Lebesgue measurability

Proposition 3.5 (quick tests for Lebesgue measurability). The following are Lebesgue mea-
surable:

1. open and closed sets

2. sets with Lebesgue outer measure 0

3. the empty set

4. the complement of a Lebesgue measurable set

5. countable unions and intersections of Lebesgue measurable sets

The above immediately implies Lebesgue measurable sets form a σ-algebra.

Proposition 3.6. Let E ⊂ Rd, and ε > 0 arbitrary. The following are equivalent:

1. E is Lebesgue measurable.

2. (outer approximation by open) One can contain E in an open set U with m∗(U \E) ≤ ε.

3. (almost open) One can find an open set U such that m∗(U 	 E) ≤ ε.

4. (inner approximation by closed) One can find a closed F ⊂ E with m∗(E \ F ) ≤ ε.

5. (almost closed) One can find a closed set F such that m∗(F 	 E) ≤ ε.
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6. (almost measurable) One can find a Lebesgue measureable set Eε such that m∗(Eε 	
E) ≤ ε.

In the above, 	 denotes the symmetric difference of sets. It is like an XOR.

Proposition 3.7 (axioms of measures).

1. m(∅) = 0

2. (countable additivity) If (En) is a countable sequence of disjoint, Lebesgue measurable
set, then m(

⋃
nEn) =

∑
nm(En).

Example 3.8 (a set which is not Lebesgue measurable). TODO

4 Lebesgue integral

4.1 simple functions

Definition 4.1. [simple function] A simple function f : Rd → C is a finite linear combination

f =
k∑
i=1

ci1Ei

where ci ∈ C, Ei ⊂ Rd are Lebesgue measurable, and 1 is the indicator function. If the
ci ∈ [0,+∞] then f is called unsigned.

Remark 4.2. The space of simple functions, Simp(Rd), is a commutative ∗-algebra under
pointwise multiplication and complex conjugation.

Definition 4.3. [integral of unsigned simple functions] If f =
∑k

i=1 ci1Ei
is an unsigned

simple function, then its integral is defined as∫
f(x) dx :=

k∑
i=1

cim(Ei).

Clearly this integral takes values in [0,∞].

Remark 4.4. One would need to check this is well defined under different representations
of the function.

Proposition 4.5 (properties of simple unsigned integral). Let f, g be simple unsigned func-
tions.

1. (unsigned linearity)

2. (finiteness)
∫
f(x) dx < ∞ if and only if f is finite a.e., and its support has finite

measure.

3. (vanishing)
∫
f(x) dx = 0 if and only if f = 0 a.e.

4. (equivalence) If f = g a.e., then
∫
f(x) dx =

∫
g(x) dx.
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5. (monotonicity) If f ≤ g a.e., then
∫
f(x) dx ≤

∫
g(x) dx.

6. (compatibility with Lebesgue measure) For any Lebesgue measurable E,
∫

1E(x) dx =
m(E).

4.2 measurable functions

4.2.1 unsigned

Definition 4.6. [unsigned measurability] Let f be an unsigned function. The following are
equivalent:

1. f is unsigned Lebesgue measurable.
2. f is the pointwise limit of unsigned simple functions.
3. f is the pointwise a.e. limit of unsigned simple functions.
4. f is the supremum of an increasing sequence 0 ≤ f1 ≤ f2, . . . of unsigned simple

functions, each of which are bounded with finite measure support.
5. For every λ ∈ [0,∞], the set {x : f(x) > λ} is Lebesgue measurable.
6. For every λ ∈ [0,∞], the set {x : f(x) ≥ λ} is Lebesgue measurable.
7. For every λ ∈ [0,∞], the set {x : f(x) < λ} is Lebesgue measurable.
8. For every λ ∈ [0,∞], the set {x : f(x) ≤ λ} is Lebesgue measurable.
9. For every interval I ⊂ [0,∞), the set f−1(I) is Lebesgue measurable.

10. For every (relatively) open set U ⊂ [0,∞), the set f−1(U) is Lebesgue measurable.
11. For every (relatively) closed set K ⊂ [0,∞), the set f−1(K) is Lebesgue measurable.

Recall that, for A ⊂ X, a set UA ⊂ A is relatively open (in A) if there exists an open set
U ⊂ X such that U ∩ A = UA.

Proposition 4.7 (common classes of unsigned measurable functions).

1. every unsigned continuous function

2. every unsigned simple function

3. the supremum, infimum, limit superior, or limit inferior of unsigned measurable func-
tions

4. an unsigned function equal a.e. to an unsigned measurable function

5. pointwise a.e. limit of unsigned measurable functions, provided the limit is unsigned

6. postcomposition of an unsigned measurable function with an unsigned continuous func-
tion

7. sum and product of unsigned measurable functions

4.2.2 complex

Definition 4.8. [complex measurability] Let f : Rd → C be a.e. defined. The following are
equivalent:

1. f is measurable.
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2. f is the pointwise, a.e. limit of simple functions
3. The (magnitudes of the) positive and negative parts of the real and complex parts are

unsigned measurable functions.
4. f−1(U) is Lebesgue measurable for every open set U ⊂ C.
5. f−1(K) is Lebesgue measurable for every closed set K ⊂ C.

Proposition 4.9 (common classes of complex measurable functions).

1. continuous functions

2. simple functions

3. a function equal a.e. to a measurable function

4. the pointwise, a.e. limit of measurable functions

5. the postcomposition of a measurable function by a continuous function

6. the sum and product of measurable functions

4.3 unsigned integrals

Definition 4.10. [lower, upper unsigned Lebesgue integrals] Let f be unsigned (not neces-
sarily measurable). The lower integral is∫

Rd

f(x) dx := sup
0≤g≤f

∫
Rd

g(x) dx

and the upper integral is ∫
Rd

f(x) dx := inf
h≥f

∫
Rd

h(x) dx

where the g and h are simple.

Proposition 4.11 (properties of lower/upper integral). Let f, g be unsigned.

1. (compatibility with simple integral) The lower, upper, and simple integrals of a simple
function all agree.

2. (monotonicity)

3. (homogeneuity)

4. (equivalence) If f, g agree a.e., then their upper/lower integrals are the same.

5. (super/sub-additivity)
∫
f(x) + g(x) dx ≥

∫
f(x) dx +

∫
g(x) dx and the direction of

the inequality flips for upper integrals.

6. (divisibility) For any measurable set E, one has
∫
f(x) dx =

∫
f(x)1E(x) dx+

∫
f(x)1Rd\E(x) dx.

7. (horizontal truncation)
∫

min(f(x), n) dx→
∫
f(x) dx as n→∞.

8. (vertical truncation)
∫
f(x)1|x|≤n dx→

∫
f(x) dx as n→∞.
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9. (reflection) If f + g is a simple function that is bounded with finite measure support

(= absolutely integrable), then
∫
f(x) + g(x) dx =

∫
f(x) dx+

∫
g(x) dx.

Definition 4.12. [unsigned Lebesgue integral] If f is unsigned and measurable, define the
unsigned Lebesgue integral

∫
f(x) dx to be equal to the lower unsigned Lebesgue integral.

4.4 Lebesgue integral

Definition 4.13. [Lebesgue integral] Let f be a.e. defined, measurable, and absolutely
integrable. If f is real-valued, define the Lebesgue integral to be∫

f(x) dx :=

∫
max(f(x), 0) dx−

∫
max(−f(x), 0) dx.

If f is complex valued, then define the Lebesgue integral to be∫
f(x) dx :=

∫
Re f(x) dx+ i

∫
Im f(x) dx.

Proposition 4.14 (integration is ∗-linear). TODO

Proposition 4.15 (triangle inequality). TODO

5 Littlewood’s three principles

1. Every measurable set is nearly a finite sum of intervals.

2. Every absolutely integrable function is nearly continuous.

3. Every pointwise convergent sequenece of functions is nearly uniformly convergent.

5.1 first principle

5.2 second principle

The following, particularly (3), is a stronger version of Littlewood’s second principle.

Theorem 5.1 (approximation of L1 functions). The following classes of functions are dense
in L1(Rd):

1. absolutely integrable

2. step

3. continuous, compactly supported

Theorem 5.2 (Lusin’s theorem). Let f be absolutely integrable. For any ε > 0, there exists
a Lebesgue measurable set E subh that m(E) < ε and the restriction of f outside of E is
continuous.
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5.3 third principle

Fix domain Rd and codomain C.

Definition 5.3. [locally uniform convergence] We say fn → f locally uniformly if, on every
bounded E ⊂ RD, fn → f uniformly.

Theorem 5.4 (Egorov’s theorem). Let fn → f pointwise a.e, and suppose all these functions
are measurable. For any ε > 0, there exists a Lebesgue measurable set A such that m(A) < ε
and fn → f locally uninformly outside of A.

5.4 related principles

1. (absolutely integrable functions almost have bounded support) Let f be absolutely
integrable. For any ε > 0, there exists a ball B(0, R) outside of which ‖f‖L1 < ε.

2. (measurable functions are almost locally bounded) Let f be measurable. For any
ε > 0, there exists a measurable set E such that m(E) < ε and f is locally bounded
outside of it, i.e. for every R > 0 there exists M < ∞ such that |f(x)| ≤ M for all
x ∈ B(0, R) \ E.

6 abstract measures

6.1 σ-algebras

Definition 6.1. [σ-algebras] Let X be a set. A σ-algebra on X is a collection B of X which
obeys the following properties:

1. ∅ ∈ B
2. (closed under complements)
3. (closed under countable union)

It follows that σ-algebras are closed under countable intersection as well.

Definition 6.2. [measurable space] A pair (X,B) is called a measurable space.

Definition 6.3. [generation of σ-algebras] Let F be any family of sets in X. Define the
σ-algebra generated by F , 〈F〉, to be the coarsest σ-algebra containing F .

Definition 6.4. [Borel σ-algebra] For a topological space X, the Borel σ-algebra B[X] of X
is the σ-algebra generated by the open subsets of X.

Remark 6.5 (Lebesgue and Borel σ-algebras are different). TODO

6.2 measure

Definition 6.6. [measure] Let (X,B) be a measurable space. An (unsigned) measure is a
map µ : B → [0,+∞] such that

1. µ(∅) = 0
2. (countable additivity) If (Ei) are a disjoint and measurable, then µ(

⋃
iEi) =

∑
i µ(Ei).
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Definition 6.7. [measure space] A triplet (X,B, µ) is called a measure space.

Proposition 6.8. Let (X,B, µ) be a measure space. Then

1. (countable subadditivity)

2. (upwards monotone convergence) If E1 ⊂ E2 ⊂ · · · are measurable, then

µ(
⋃
n

En) = lim
n→∞

µ(En) = sup
n
µ(En).

3. (downwards monotone convergence) If E1 ⊃ E2 ⊃ · · · are measurable, and µ(En) <∞
for at least one n, then

µ(
⋂
n

En) = lim
n→∞

µ(En) = inf
n
µ(En).

Definition 6.9. [completeness] A measure space is complete if every sub-null set (comple-
ment of a null set) is a null set (a set of measure zero).

Remark 6.10. On Rd, the Lebesgue measure space is complete but the Borel measure space
is not.

6.3 integration

Definition 6.11. [measurable function] Let (X,B) be a measurable space. A function
f : X → [0,+∞] or f : X → C is measurable if f−1(U) for every open subset U of [0,+∞]
or C.

Definition 6.12. [integral of simple functions] An (unsigned) simple function f : X →
[0,+∞] on a measurable space is a measurable function taking on finitely many values
a1, . . . , ak. Its integral is defined as∫

X

f dµ :=
k∑
j=1

ajµ(f−1({aj})).

Definition 6.13. [unsigned integral] Let f be unsigned and measurable. Define its integral
to be ∫

X

f dµ := sup
0≤g≤f

∫
X

g dµ,

where the g are simple.

Proposition 6.14 (properties of unsigned integral). Let f, g be unsigned and measurable.

1. (a.e. equivalence)

2. (monotonicity)

3. (homogeneity)
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4. (supperadditivity)

5. (compatibility with simple integral)

6. (Markov’s inequality)

7. (finiteness)

8. (vanishing)

9. (vertical truncation) We have

lim
n→∞

∫
X

min(f, n) dµ =

∫
X

f dµ.

10. (horizontal truncation) If (Ei) is an non-decreasing sequence of measurable sets,

lim
n→∞

∫
X

f 1En dµ =

∫
X

f1⋃
n En dµ.

11. (restriction)

Proof.
Vertical truncation

This is a consequence of upwards monotone convergence for measurable sets (TODO ref).

lim
n→∞

∫
X

min(f, n) dµ = lim
n→∞

∫
X

f1{x|f(x)≤n} dµ

= lim
n→∞

sup
0≤g≤f

∫
g1{x|f(x)≤n} dµ

(where the g are simple)

= lim
n→∞

∑
0≤g≤f

k∑
i=1

ciµ(g−1(ci) ∩ {x | f(x) ≤ n})

(where the ci are the finitely many values of g)

= sup
0≤g≤f

k∑
i=1

ciµ(g−1(ci))

(since the sets g−1(ci) ∩ {x | f(x) ≤ n} are monotonically increasing as n→∞)

=

∫
X

f dµ.

Horizontal truncation

This is another consequence of the upwards monotone convergence for measurable sets, and
the proof is analagous to the one above.
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Theorem 6.15 (linearity of unsigned integral). TODO

Proposition 6.16 (linearity in µ). TODO

Proposition 6.17 (change of variables formula). TODO

Definition 6.18. [general integral] TODO

6.4 signed measures

Definition 6.19. [signed measure] A signed measure is a map µ : X → [−∞,+∞] such
that

1. µ(∅) = 0.
2. µ can take either +∞ or −∞ but not both.
3. If (Ei) are disjoint, then

∑
n µ(En) → µ(

⋃
nEn). If the latter is finite, the sum is

absolutely convergent.

Theorem 6.20 (Hahn decomposition). Let µ be a signed measure. Then we can find
(explicitly) a partition X = X+ ∪ X− such that µ+ := µ|X+ ≥ 0 and µ− := −µ|X− ≥ 0.
Moreover, these sets are unique modulo null  

1
 sets.

Proof. Without loss of generality, we may assume µ avoids +∞, by replacing µ with −µ if
necessary.

We will construct X+ to be the totally positive  

2
 set of maximal measure. Define m+ to

be the supremum of µ(E) where E ranges over all totally positive sets. Then we can find
a sequence of totally positive sets (En) such that µ(En) → m+. Let X+ =

⋃
nEn. Then

µ(X+) = µ(
⋃
nEn) = limn→∞ µ(En) = m+. Since µ avoids +∞ (by our without loss of

generality assumption), m+ is finite.

Let X− := X \X+. It suffices to show that X− is totally negative. Suppose otherwise. Our
idea will be to construct a subset E ⊂ X− that belongs to X+. Since we have supposed
that X− is not totally negative, there exists a subset E1 ⊂ X− of strictly positive measure.
If E1 were totally positive, then X+ ∪ E1 would be a positive set having measure strictly
greater than m+ (since E1 6⊂ X+), which is a contradiction. Thus E1 must contain a subset
of strictly negative measure, whose complement must have strictly larger measure than E1.

So pick E2 such that µ(E2) ≥ µ(E1) + 1/n1, where n1 is the smallest integer for which such
an E2 exists. Note that this is well-defined; at the end of the previous paragraph we have
asserted that at least one possible n1 exists, and from there there are only finitely many
more choices to pick from. If E2 is totally positive, we again have a contradiction and so we
can find a subset E2 with µ(E3) ≥ µ(E2) + 1/n2 where n2 is the smallest integer for which
such an E3 exists. In this way, we obtain a sequence E1 ⊃ E2 ⊃ · · · in X− of increasing
positive measure, specifically µ(Ej+1) ≥ µ(Ej) + 1/nj.

1A set E is called null for a signed measure µ if µ|E = 0. Note this implies µ(E) = 0, but not conversely
since E may contain subsets of non-zero measure even if it has signed measure zero.

2A set E is totally positive if µ|E ≥ 0, i.e. µ(E′) ≥ 0 for any E′ ⊂ E measurable. We can analagously
define totally negative sets.
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Define E :=
⋂
j Ej. It is measurable, being the countable union of measurable sets, and

µ(E) = limj→∞ µ(Ej) > 0 by the TODO REF (does this apply to signed measures?). By
assumption µ(E) < ∞, hence it must be the case that nj → ∞. We claim E does not
contain any subsets of strictly larger measure, hence a contradiction by previous remarks.
Suppose it contained such a set D. But then D ⊂ Ej for some j, hence µ(D) ≥ µ(Ej)+1/nj
for some nj, hence E ⊂ D and so E = D, which is a contradiction.

Now we will show uniqueness up to null sets. Let X = Y+ ∪ Y− be another decomposition.
By construction, X+ is the maximal totally positive subset of X, hence Y+ ⊂ X+. Let
C = X+ \ Y+. Then C ⊂ Y−. If µ(C) 6= 0, then µ(C) > 0 which contradicts this fact.

Corollary 6.21 (Jordan decomposition). Every signed measure µ can be uniquely decom-
posed as µ = µ+ − µ−, where µ+ and µ− are mutually singular 

3
 unsigned measures, called

the positive and negative parts/variations of µ.

Definition 6.22. [finite signed measure] A signed measure µ is finite if any of the following
are equivalent hold:

1. µ(E) is finite for every E.
2. |µ| is a finite unsigned measure.
3. µ+ and µ− are finite unsigned measures.

Definition 6.23. [σ-finite signed measure] A signed measure µ is σ-finite if |µ| is a σ-finite
unsigned measure.

Theorem 6.24 (Lebesgue-Radon-Nikodym). Let m be an unsigned σ-finite measure, and
µ a signed σ-finite measure. There exists a unique decomposition

µ = mf + µs

where f ∈ L1(X, dm) and µs ⊥ m. Moreover, if µ is unsigned then f and µs are also.

7 convergence theorems

7.1 summary

One of our primary motivations in developing measure theory has been to obtain an integral
that obtains well “at the limit”, in various senses. Perhaps most directly, we ask if

lim
n→∞

∫
X

fn dµ
?
=

∫
X

lim
n→∞

fn dµ.

There are two major ways to ensure compatibility of the integral with limits: monotonicity
and domination.

3Two signed measures µ and ν are mutually singular, µ ⊥ ν, if they can be supported on disjoint sets. A
signed measure µ is supported on E if the complement of E is null.
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7.2 counterexamples

7.3 monotone convergence theorem

Theorem 7.1 (monotone covergence theorem for measurable sets).

1. (upward) Let (Ei) be a countable, non-decreasing sequence of measurable sets. Then
m(
⋃
nEn) = limn→∞m(En).

2. (downward) Let (Ei) b e acountable, non-increasing sequence of measurable sets. If at
least one of the m(En) is finite, then m(

⋂
nEn) = limn→∞m(En).

Remark 7.2. The basic reason (1) is true is that montonicity allows us to “disjointify” the
En, so that countable additivity becomes available to us.

Proof. First we will address (1). Under the assumptions, we can rewrite

N⋃
n=1

En =
N⋃
n=1

(
En \

n−1⋃
m=1

En

)
.

Therefore ⋃
n

En =
⋃
n

(
En \

n−1⋃
m=1

En

)
,

where we observe the countable union on the right is now of disjoint sets. We use the
convention that whenever the upper index in a finite union is less than the lower index, the
result is the empty set. Note that it may be possible for many sets in the right-hand-side
union to be empty, but this does not affect disjointedness. By applying countable additivity
to the right, we see that m(

⋃
nEn) =

∑
nm(En).

Now we will address (2). TODO.

Theorem 7.3 (monotone convergence theorem). Let 0 ≤ f1 ≤ f2 ≤ · · · be a monotone,
non-decreasing sequence of unsigned measurable functions on X. Then

lim
n→∞

∫
X

fn dµ =

∫
X

lim
n→∞

fn dµ.

Proof. Half of the equality is apparant:

lim
n→∞

∫
X

fn dµ ≤
∫
X

f dµ.

In the other direction, we know that∫
X

f dµ = sup
0≤g≤f

∫
X

g dµ
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where the g are simple, and so it suffices to show that∫
X

g dµ ≤ lim
n→∞

∫
X

fn dµ.

The simple function g is bounded everywhere by f , but not bounded everywhere (it may
even be bounded nowhere) by fn for some n. The idea is that the measure of the places
where g is bounded by fn approaches the measure of the entire space as we take limits,
since the fn → f and g ≤ f everywhere. Monotonicity makes this possible by the previous
theorem (TODO ref).

There is a subtle technical detail we need to be weary of, however. If g is exactly equal to f
somewhere, then it may never become bounded by the fn, since the values of f may never
be attained by any fn. This is a stiuation where we would like to give ourselves an “epsilon
of room”, to consider not the actual values ci of g, but a scaled down version (1 − ε)ci for
0 < ε < 1. This puts separation between g and f , but only if c 6= +∞.

By vertical truncation (TODO ref), this is not an issue. We have that

lim
m→∞

∫
X

min(g, n) dµ =

∫
X

g dµ,

so to show that ∫
X

g dµ ≤ lim
n→∞

∫
X

fn dµ

it suffices that show ∫
X

min(g, n) dµ ≤ lim
n→∞

∫
X

fn dµ

for all n. Of course, min(g, n) only takes on finite values.

We proceed as follows. Let min(g, n) take the finite (unsigned) values (ci)
k
1 on the (disjoint,

measurable) sets (Ai)
k
1. Pick ε ∈ (0, 1). Then,

sup
n
fn(x) = f(x) > (1− ε)ci

for all x ∈ Ai. Now define the sets

Ai,n := {x ∈ Ai : fn(x) > (1− ε)ci}.

The Ai,n are measurable by (TODO ref). We claim
⋃
nAi,n = Ai. Indeed, for any x ∈ Ai,

α := f(x)−(1−ε)ci > 0, so there exists (in particular) n > 0 such that 0 < f(x)−fn(x) < α.
Then fn(x) > (1− ε)ci, so x ∈ Ai,n.

So we can apply upwards monotonicity of measure (TODO ref) to get that

lim
n→∞

µ(Ai,n) = µ(Ai).

By construction of the Ai,n,

fn ≥
k∑
i=1

(1− ε)ci1Ai,n
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for any n, we we can integrate to get∫
X

fn dµ ≥ (1− ε)
k∑
i=1

ciµ(Ai,n).

Taking limits,

lim
n→∞

∫
X

fn dµ ≥ (1− ε)
k∑
i=1

ciµ(Ai) = (1− ε)
∫
X

min(g, n) dµ,

and by sending ε→ 0 we get what we were looking for.

Corollary 7.4 (Tonelli’s theorem for sums and integrals). Let (fn) be a sequence of unsigned
measurable functions. Then ∫

X

∞∑
n=1

fn dµ =
∞∑
n=1

∫
X

fn dµ.

Proof. The idea is that the partial sums are a monotone sequence, and we can apply the
monotone convergence theorem.

Corollary 7.5 (Fatou’s lemma). Let (fn) be a sequence of unsigned measurable functions.
Then ∫

X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫
X

fn dµ.

Proof. The idea is that FN := infn≥N fn is a montone (non-decreasing) sequence of unsigned
measurable functions (TODO ref). So by the montone convergence theorem (TODO ref)∫

X

lim
N→∞

Fn dµ = lim
N→∞

∫
X

FN dµ.

Now by construction (and monotonicity, TODO ref)
∫
X
FN dµ ≤

∫
X
fn dµ for all n ≥ N . So∫

X

FN dµ ≤ inf
n≥N

∫
X

fn dµ.

Taking limits,∫
X

lim inf
n→∞

fn dµ =

∫
X

lim
N→∞

Fn dµ = lim
N→∞

∫
X

FN dµ ≤ lim
n→∞

inf
n≥N

∫
X

fn dµ
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7.4 dominated convergence theorem

Theorem 7.6 (dominated convergence theorem). Let (fn) be a sequence of measurable
functions X → C that converge pointwise a.e. to a measurable limit f . Suppose there exists
an unsigned, absolutely integrable function G that bounds each |fn| pointwise a.e. Then

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.

Proof. We may assume without loss of generality that the convergence and boundedness
in the hypothesis is everywhere rather than a.e., and that the fn and f are real. Then
−G ≤ fn ≤ G and likewise for the limit f . Thus the functions fn +G are unsigned, and we
can apply Fatou’s lemma (TODO ref) to obtain∫

X

f +G dµ =

∫
X

lim
n→∞

fn +G dµ =

∫
X

lim inf
n→∞

fn +G dµ ≤ lim inf
n→∞

∫
X

fn +G dµ.

The key thing to note is that
∫
X
G dµ is finite by assumption, so we can subtract it to get∫
X

f dµ ≤ lim inf
n→∞

∫
X

fn dµ.

Conversely, the functions G− fn are also unsigned, and we proceed analagously. First,∫
X

G− f dµ ≤ lim inf
n→∞

∫
X

G− fn dµ,

and subtracting
∫
X
G dµ gives us∫

X

−f dµ ≤ lim inf
n→∞

∫
X

−fn dµ.

Negating both sides,

lim sup
n→∞

∫
X

fn dµ ≤
∫
X

f dµ.

In conclusion,

lim sup
n→∞

∫
X

fn dµ ≤
∫
X

f dµ ≤ lim inf
n→∞

∫
X

fn dµ,

and since lim inf ≤ lim sup, we must have equalities in the equation above, and since lim inf =
lim sup the limit must also exist and equal that same number.

8 constructing measures

8.1 basic operations

Proposition 8.1. Let (X,A) be a measure space, and let µ be an unsigned measure on it.
Let A,B ∈ A.
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1. The function ν(A) = cµ(A) is an unsigned measure for c ≥ 0.

2. The function ν(A) = µ(A ∩B) is an unsigned measure, and∫
X

fdν =

∫
B

fdµ.

for every nonnegative function f .

Proof.

1. Needed?

2. Consider ∫
X

fdν = sup
0≤g≤f simple

k∑
i=1

akµ(Ak ∩B)

= sup
0≤g≤f

∫
g · 1B dµ

=

∫
B

f dµ.

Proposition 8.2. Given two unsigned measures µ, ν, then

1. (µ+ ν)(E) := µ(E) + ν(E)

2. (cµ)(E) := c(µ(E))

are unsigned measured, and

1. (µ− ν)(E) := µ(E)− ν(E)

is a signed measure provided either µ and ν is finite.

Remark 8.3. By the Hahn decomposition theorem (Thm TODO ref), every signed measure
is a difference as above.

Proposition 8.4 (absolute value). The absolute value, or total variation, of a signed measure
µ is the unsigned measure |µ| := µ+ + µ−.

Proposition 8.5. |µ| is the minimal unsigned measure such that −|µ| ≤ µ ≤ |µ|.

Proposition 8.6. |µ|(E) is equal to the maximum value of
∑

n |µ(En)|, where (En) ranges
over the partitions of E.

16



8.2 Radon-Nikodym

Definition 8.7. Let m be an unsigned measure, and f an unsigned function. Then we can
construct a new unsigned measure mf as follows:

mf (E) :=

∫
X

1Ef dm.

If f is signed, and either max(f, 0) or max(−f, 0) is absolutely integrable, then mf is a signed
measure.

Remark 8.8. When f = 1A, this this is called the restriction of m to A.

Proposition 8.9. mf is an unsigned measure.

Proposition 8.10. For any g : X → [0,+∞], we have
∫
X
g dmf =

∫
X
gf dm. (We write

this relationship as dmf = f dm).

Proposition 8.11. If m is σ-finite, mf = mg if and only if f(x) = g(x) for m-almost every
x.

Definition 8.12. [Radon-Nikodym derivative] A measure µ is differentiable with respect to
m if µ = mf (i.e. µ = mf ) for some f . We call this f the Radon-Nikodym derivative of µ
with respect to m, writing

f =
dµ

dm
.

Remark 8.13. If m is σ-finite, the Radon-Nikodym derivative is defined up to m-a.e. equiv-
alence.

9 product measures comment
on σ-
finite
as-
sump-
tion

9.1 product σ-algebras

Given two measure spaces (E,A) and (F,B), we define the product σ-algebra to be

A⊗ B := σ(A×B | A ∈ A, B ∈ B),

i.e. the σ-algebra generated by so called “measurable rectangles”. It is universal in the
following sense:

Proposition 9.1. A⊗ B is the smallest σ-algebra such that the projection maps

π1 : E × F → E,

π2 : E × F → F

are measurable.

Proof idea. For π1 to be measurable, the sets (e, F ) must be measurable, likewise the sets
(E, f) if π2 is to be measurable.

17



Now, for C ∈ A⊗ B, Let

Cx∈E := {y ∈ F | (x, y) ∈ C},
Cy∈F := {x ∈ E | (x, y) ∈ C}.

Proposition 9.2. Cx ∈ B and Cy ∈ A.

Proof idea. This is a consequence of the universal property of A ⊗ B. By construction the
proposition holds for when C is a measurable rectangle. One then sees this property is
preserved under complements, countable unions, and countable intersections. Thus the set
C of all C such that the proposition holds is a σ-algebra. But C ⊂ A ⊗ B, and A ⊗ B is
minimal, hence C = A⊗ B.

We can build on this definition with the following: given a function

f : (E × F,A⊗ B)→ (G,G),

define the functions

fx(y) := f(x, y),

f y(x) := f(x, y).

Proposition 9.3. fx is B-measurable, and f y is A-measurable.

Proof idea. This builds on the previous proposition in the following way: for any measurable
subset D ∈ G, notice that f−1x (D) = (f−1(D))x.

9.2 product measures

We now state an assumption we will hold for the rest of this section: the measures we will
consider are σ-finite. So let (E,A, µ) and (F,B, ν) be σ-finite.

Theorem 9.4. There exists a unique measure (E × F,A⊗ B, µ⊗ ν) such that

µ⊗ ν(A×B) = µ(A)ν(B).

This measure is σ-finite, and can be defined in the following equivalent ways:

µ⊗ ν(C) =

∫
E

ν(Cx)µ(dx) =

∫
F

µ(Cy)ν(dy).

Implicit in the above statement is that the functions x 7→ ν(Cx) and y 7→ µ(Cy) are A- and
B-measurable, respectively.

18



Proof idea. Uniqueness: SinceA⊗B is generated by sets of the form A×B, any two measures
which satisfy the property in the theorem will agree on any set in A⊗ B.

Existence: Let us discuss the first equality, as the second is analagous. We first need to show
that x 7→ ν(Cx) is A-measurable. To do this, we begin with the case where ν is finite, and
then generalize to the σ-finite case. So suppose ν is finite. Again, we utilize the universal
property of A⊗ B: let C be the class of all sets C ∈ A ⊗ B is measurable. One then shows
C contains all measurable rectangles and is a monotone class (TODO REF). Then, by the
monotone class theorem, it is a σ-algebra and by minimality it must be equal to A⊗ B.

To generalize to the σ-finite case, determine (the existence of) an increasing sequence of
finite measure sets Bn whose union is F . Restricting ν to any Bn gives a finite measure, to
which the previous paragraph applies. Then take ν = limn νn in an appropriate sense.

Now one carries out an explicit calculation to show that the first equality in the theorem is
a measure and satisfies the characteristic property.

Remark 9.5. One generalizes this to the product of an arbitrary finite number of σ-finite
measures:

µ1 ⊗ · · · ⊗ µn = µ1 ⊗ (µ2 ⊗ · · · (µn−1 ⊗ µn)).

The order of the parenthesis is unimportant since the measure is characterized by its value
on measurable rectangles, and ordinary multiplication is associative.

9.3 Fubini theorems

We can get similar results under varying assumptions. If f is nonnegative, then all we require
is that f be measurable. But if f is signed, then we require f be L1.

In what follows, let (E,A, µ) and (F,B, ν) be σ-finite.

Theorem 9.6 (Fubini-Tonelli). Suppose f : E × F → [0,∞] be measurable (with respect
to the product measure). Then,

1. Letting x ∈ E and y ∈ F , the functions

x 7→
∫
F

f(x, y) ν(dy),

y 7→
∫
E

f(x, y) µ(dx)

are A- and B-measurable, respectively.

2. ∫
E×F

f dµ⊗ ν =

∫
E

(∫
F

f(x, y) ν(dy)

)
µ(dx) =

∫
F

(∫
E

f(x, y)µ(dx)

)
ν(dy).

Proof. prove
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Theorem 9.7 (Fubini-Lebesgue). Suppose f ∈ L1(E × F,A⊗ B, µ⊗ ν). Then

1. • fx(y) ∈ L1(F,B, ν) for almost all x (µ(dx) a.e.)

• fy(x) ∈ L1(E,A, µ) for almost all y (ν(dy) a.e.)

2. •
(
x 7→

∫
F
f(x, y) ν(dy)

)
∈ L1(E,A, µ)

•
(
y 7→

∫
F
f(x, y) µ(dx)

)
∈ L1(F,B, ν)

3. (just as in the Fubini-Tonelli theorem)∫
E×F

f dµ⊗ ν =

∫
E

(∫
F

f(x, y) ν(dy)

)
µ(dx) =

∫
F

(∫
E

f(x, y)µ(dx)

)
ν(dy).

Proof. prove

10 unsorted

Let (E,A, µ) be a measure space, and U be a metric space.

Theorem 10.1. Let u0 ∈ U . If
f : U × E → R

is such that

1. fu : E → R is measurable

2. fx : U → R is continuous at u0 ∈ E for almost all x

3. for every u ∈ U there exists g ∈ L1
+(E) such that |fu(x)| ≤ g(x) for almost all x,

then

F (u) :=

∫
E

f(u, x)µ(dx)

is well defined for all u ∈ U and continuous at u0.

Proof. Well definedness follows by assumption (3). For continuity at u0, let (un) ⊂ U be a
sequence converging to u0. By assumption (2), fx(un)→ fx(u) for almost all x. Assumption
(3) again allows us to invoke the dominated convergence theorem (Theorem  7.6 ) to get

lim
n→∞

∫
X

fundµ =

∫
x

fu0dµ,

proving continuity of F at u0.

Remark 10.2. We may replace R with C in the above theorem.

Under stronger conditions, we can make it so that the function F is not only continuous at
u0, but also differentiable.
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Theorem 10.3. Let I be an open interval of R, and u0 ∈ I. Suppose

f : I × E → R

is such that

1. fu : E → R is in L1(E) for all u ∈ I

2. fx : I → R is differentiable at u0, i.e. Dfx(u0) exists, for almost all x.

3. there exists g ∈ L1(E) such that, for all u ∈ I,

|fu(x)− fu0(x)| ≤ g(x)|u− u0|

for almost all x.

Then

F (u) =

∫
f(u, x)µ(dx)

is well-defined and differentiable at u0:

F ′(u0) =

∫
Dfx(u0)µ(dx).

Proof. prove,
legall
2.13Example 10.4 (convolution). Let φ ∈ L1(R) and h : R → R be bounded continuous. Let

does φ
need
to be
Borel?

us verify that the function

f(u, x) : R× R→ R
(u, x)→ h(u− x)φ(x)

satisfies the conditions of Theorem  10.1 :

1. fu is measurable since it is the pointwise product of a continuous and measurable
function.

2. fx is continuous (everywhere) since the φ term becomes constant, so it is essentially a
constant times h.

3. |fu(x)| bounds itself and is in L1
+(E) since φ is integrable and h is bounded, hence

their product is integrable.

Thus we can apply the theorem to define the convolution

h ∗ φ(u) :=

∫
h(u− x)φ(x)λ(dx).

This is a bounded function, and theorem also implies it is continuous on all R.

Now suppose h is continuously differentiable, and both h and h′ are bounded. Then h ∗ φ is
differentiable on R, and

(h ∗ φ)′ = h′ ∗ φ.
finish
proof
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