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(co)Limits and (co)Ends 
The most common definition of a (category-theoretic) limit, and the most intuitive perspective in 
many use cases, is as the universal cone over a particular diagram. We begin by unraveling this 
definition into a definition via equalizers. From this perspective, it becomes clear that limits are a 
special case of a more general construction known as ends. These are powerful tools- in our case, 
their associated calculus, the “(co)end calculus”, will enable us to elegantly prove powerful 
statements. There is of course a dual notion of a coend, but for the sake of motivation we 
approach the (co)end calculus via limits. 

Corollary 1.1.  The limit object of a presheaf 𝐹 is the set of all cones with respect to 𝐹. 

We begin with the following approach in Mac Lane’s “Categories for the Working 
Mathematician” (p. 105). Consider a presheaf 𝐹 over the category of ordinals ℕ, whose 
morphisms are the standard ordering. Then we have the following diagram 

 

(The morphisms are reversed because the source of 𝐹 is the opposite category of ℕ.) But as it is, 
this diagram may not necessarily commute, i.e., not every triplet may constitute a cone. (The 
above diagram only indicated the source and targets of maps.) From this we are led to consider 
cones as specific “pieces” of the maps 

#𝐹
!∈ℕ

(𝑛) →#𝐹
!∈ℕ

(𝑛). 

We want to express the limit in terms of this map, but first we will generalize. For a general 
presheaf 𝐶op → Set, the codomain we are actually interested in is the product of all images of 
morphisms in 𝐶op. For otherwise there couldn’t possibly be a cone. We adopt the convention that 
given a morphism 𝑓, write 𝑠(𝑓) for the source object and 𝑡(𝑓) for the target object. We can then 
express the above more generally as a map 

# 𝐹
$∈%op

(𝑐) → # 𝐹
&∈Mor(%op)

(𝑡(𝑓)). 



Recall that a cone is a collection of maps 𝑝) for each 𝑗 ∈ 𝐶op such that for all morphisms 𝑓: 𝑗 →
𝑘 the following diagram commutes: 

	

(Here, 𝐴 ∈ Set.) This is the condition that 𝐹(𝑓) ∘ 𝑝) = 𝑝*. By the definition of a product, every 
map 𝑝) factors uniquely through ∏ 𝐹) (𝑗) → 𝐴. We can consider the maps 𝑝) as maps out of the 
product, rather than out of 𝐴. (The maps out of the product are the canonical projections. At the 
risk of abusing notation for transparency, we will also call these maps 𝑝).) We can thus consider 
the requirement that 𝐹(𝑓) ∘ 𝑝) = 𝑝* as defining the equalizer of the parallel morphisms 𝐹(𝑓) ∘
𝑝) and 𝑝*. This is by definition the set of all cones, hence the limit of the presheaf 𝐹 (cor. 1): 

 

(By writing Mor(𝑗) we mean the set of morphisms in the ambient category that 𝑗 belongs to 
which have 𝑗 as a source.) This is the approach taken in the nLab limit article. 

In enriched category theory, the set of morphisms is an object (not just a set, for instance) in the 
category we enriching over. So we are motivated to rework the equalizer above- it no longer 
makes sense to index the products over the set morphisms; we need to somehow index over the 
space of morphisms. 

It makes sense to start by reworking the codomain. Notice that 

# 𝐹
&∈Mor())

(𝑡(𝑓)) ≅#𝐹
),*

(𝑘)%op(),*) 

where 

𝐹(𝑘)%op(),*) = [𝐶op(𝑗, 𝑘), 𝐹(𝑘)]. 

Here we consider 𝐶op(𝑗, 𝑘) as a set, and so 𝐹(𝑘)%op(),*) as a set has precisely as many elements 
as there are morphisms in 𝐶op from 𝑗 to 𝑘. The upshot of this phrasing is that it suggests a 
generalization to the case where 𝐶op is 𝑉-enriched (hence our notation). For then 𝐶op(𝑗, 𝑘) ∈ 𝑉, 
and, if we view 𝑉 as enriched over itself, 𝐹(𝑘)%op(),*) ∈ 𝑉 as well. 

Now we need to rework the maps we are equalizing. First let’s consider the map 𝐹(𝑓) ∘ 𝑝). 
There isn’t anything wrong with the projection map, even in our new codomain we still have a 
projection map, though it is of course defined slightly differently. (In particular by 
postcomposing with the isomorphism above.) At the risk of abusing notation for the sake of 
transparency, we will still call the projection 𝑝). We do, however, need to redefine 𝐹(𝑓) in light 
of our new codomain. Observe that 𝐹(𝑓) is equivalently a map 



(𝑗 → 𝑘) ↦ (𝐹(𝑗) → 𝐹(𝑘)). 

The adjunct of this map 

𝜆),*: 𝐹(𝑗) → [𝐶op(𝑗, 𝑘), 𝐹(𝑘)] 

is of the form we desire, and captures the same information. Hence the analog to the map 
∏ 𝐹&∈Mor()) (𝑓) ∘ 𝑝) is 

𝜆 := # 𝜆),*
),*∈%op

∘ 𝑝) . 

Now let’s consider the other map we are equalizing, 𝑝*. This map contains the information of the 
projection, as well as only being defined for 𝑘 that were targets of morphisms in 𝐶op. The set of 
𝑘 that are targets of morphisms are in bijection with maps of the form 

(𝑗 → 𝑘) →∗→ (𝐹(𝑘) → 𝐹(𝑘)). 

(Here, the second map is the adjunct of the identity on 𝐹(𝑘), hence our factoring through ∗ 
serves to indicate we are sending 𝑗 → 𝑘 to the identity on 𝐹(𝑘), which is necessary for our 
bijection.) The adjunct of this map 

𝜌),*: 𝐹(𝑘) → [𝐶op(𝑗, 𝑘), 𝐹(𝑘)] 

is of the form we want and contains the same information. Hence the analog to the map 
∏ 𝑝,(&)&∈Mor())  is 

𝜌 := # 𝜌),*
),*∈-op

∘ 𝑝* . 

A limit is thus the equalizer 

 

But observe that given a pair (𝑗, 𝑘), we defined 𝜆),* to have source 𝐹(𝑗) and 𝜌),* to have source 
𝐹(𝑘). By having the domain of the parallel morphisms being indexed only over the product all 
𝐹(𝑗), we are only really considering the 𝑗 which are both the source and target of at least one 
(perhaps seperate) morphism. We thus manifest ends as a generalization of limits that preserves 
this nuance, following the ends article from the nLab: 

Definition 2.  For 𝑉 a symmetric monoidal category, 𝐶 a 𝑉-enriched category and 𝐹: 𝐶op × 𝐶 →
𝑉 a 𝑉-enriched functor, the end of 𝐹 is the equalizer 

 

with 𝜌 given in components by 



𝜌$!,$": 𝐹(𝑐., 𝑐.) → [𝐶(𝑐., 𝑐/), 𝐹(𝑐., 𝑐/)] 

being the adjunct of 

𝐹(𝑐., −): 𝐶(𝑐., 𝑐/) → [𝐹(𝑐., 𝑐.), 𝐹(𝑐., 𝑐/)] 

and 

𝜆$!,$": 𝐹(𝑐/, 𝑐/) → [𝐶(𝑐., 𝑐/), 𝐹(𝑐., 𝑐/)] 

being the adjunct of 

𝐹(−, 𝑐/): 𝐶(𝑐., 𝑐/) → [𝐹(𝑐/, 𝑐/), 𝐹(𝑐., 𝑐/)]. 

Dually, we define 

Definition 3.  The coend of 𝐹 is the coequalizer 

 

with the parallel morphisms induced by the two actions of 𝐹. 

Remark 4.  Typically, enriching over a “sufficiently nice” category 𝑉 means requiring 𝑉 to be 
symmetric monoidal. If we further assume 𝑉 is closed monoidal, then 𝑉 can be considered 
enriched over itself. Hence forth, we will assume 𝑉 to by symmetric monoidal. 

Example 5.  In the above, 𝐹 is a functor from 𝐶op × 𝐶 → 𝑉. Thus, if we define 𝐹 such that 
𝐹(𝑐., 𝑐/) = 𝐹′(𝑐.) for some functor 𝐹′: 𝐶op → 𝑉, we recover the notions of a limit and colimit: 

lim𝐹 = D 𝐹
$∈%

′(𝑐) : = D 𝐹
$∈%

(𝑐, 𝑐),

colim𝐹 = D 𝐹
$∈%

′(𝑐) : = D 𝐹
$∈%

(𝑐, 𝑐).
 

In the spirit of consistency, limits and colimits are often written in this notation when (co)ends 
are involved. 

Example 6.  What is almost immediate after unraveling definitions is the expression of natural 
transformations in terms of ends: given 𝐹, 𝐺: 𝐶 → 𝐷, 

[𝐶, 𝐷](𝐹, 𝐺) = D 𝐷
$∈%

(𝐹(𝑐), 𝐺(𝑐)). 

Taking the end, this is the collection of 𝐹(𝑐) → 𝐺(𝑐) that are in the equalizer as above, i.e. 
satisfy that for each 𝑐. → 𝑐/ there exists a commuting square of the form 



 
But this is equivalently a natural transformation. Since ends are universal with this property, each 
commuting square of the above form is in the equalizer and hence in the end. 

Example 7.  Given a Hom functor that preserves limits in each variable separately, we have the 
following properties: 

Hom(𝑋,D𝐹
$
(𝑐, 𝑐)) ≅ DHom

$
(𝑋, 𝐹(𝑐, 𝑐)),

Hom(D 𝐹
$
(𝑐, 𝑐), 𝑌) ≅ DHom

$
(𝐹(𝑐, 𝑐), 𝑌).

 

Notable examples of Hom functors that preserve limits are the standard Set-valued Hom and the 
pointed topological mapping space 

Maps(−,−)∗:Topcg
∗/ × Topcg

∗/ → Topcg
∗/. 

Example 8.  The way of writing 𝐹 hopefully makes transparent the idea of the end as the 
equalizer of the left and right actions encoded in 𝐹. 

The (co)End Calculus 
We now collect several results that allow us to prove things using (co)ends. These and similarly 
motivated results constitute the co(end) calculus. We draw primarily from the ends and 
Introduction	to	Stable	homotopy	theory	--	1-2	articles	from	the	nLab.	The	particular	form	of	
Proposition	10	is	due	to	Loregian’s	“(co)End	Calculus”,	which	is	an	excellent	
comprehensive	reference	for	the	general	subject. 

Corollary 9.  Any continuous functor 𝐾 preserves ends, and any cocontinuous functor 𝐾′ 
preserves coends. For instance, given a functor 𝐹: 𝐶op × 𝐶 → 𝑉 and 𝑐 ∈ 𝐶, 𝑣 ∈ 𝑉, 

𝐾(𝑣,D𝐹
$
(𝑐, 𝑐)) ≅ D𝐾

$
(𝑣, 𝐹(𝑐, 𝑐)),

𝐾′(D 𝐹
$
(𝑐, 𝑐), 𝑣) ≅ D 𝐾

$
′(𝐹(𝑐, 𝑐), 𝑣).

 

Proposition 10 (Fubini’s theorem for (co)ends).  Given 𝑉-enriched categories 𝐶 and 𝐷, and a 𝑉-
enriched functor 

𝐹: 𝐶op × 𝐶 × 𝐷op × 𝐷 → 𝑉, 

if the (co)end of 𝐹 exists, then 



D 𝐹
$,2

(𝑐, 𝑐, 𝑑, 𝑑) ≅ D D𝐹
$2
(𝑐, 𝑐, 𝑑, 𝑑) ≅ D D𝐹

2$
(𝑐, 𝑐, 𝑑, 𝑑). 

Dually, 

D 𝐹
$,2

(𝑐, 𝑐, 𝑑, 𝑑) ≅ D D 𝐹
$2
(𝑐, 𝑐, 𝑑, 𝑑) ≅ D D 𝐹

2$
(𝑐, 𝑐, 𝑑, 𝑑). 

Proposition 11.  Let 𝐹, 𝐺: 𝐶 → 𝐷 be functors. Write [𝐶, 𝐷](𝐹, 𝐺) for the set of natural 
transformations between them. Then 

[𝐶, 𝐷](𝐹, 𝐺) = D 𝐷
$∈%

(𝐹(𝑐), 𝐺(𝑐)). 

Proposition 12.  For functors 𝑆: 𝐶op → 𝐷 and 𝑇: 𝐶 → 𝐷, 

𝑆 ⊗
%
𝑇 = D 𝑆

$∈%
(𝑐) ⊗

-
𝑇(𝑐). 

Lemma 13 (co-Yoneda lemma).  Every 𝑉-valued presheaf 𝐹: 𝐶op → 𝑉 is a colimit of 
representable presheaves: 

𝐹(−) ≃ D 𝐹
$∈%

(𝑐) ⊗
3
𝑉(−, 𝑐). 

Proof. 

𝑉(D 𝐶
$4∈%

(𝑐, 𝑐′) ⊗ 𝐹(𝑐′), 𝑦) ≅ D 𝑉
$4∈%

(D 𝐶
$4∈%

(𝑐, 𝑐′) ⊗ 𝐹(𝑐′), 𝑦)

≅ D 𝑉
$4∈%

(𝐶(𝑐, 𝑐′) ⊗ 𝐹(𝑐′), 𝑦)

≅ D 𝑉
$4∈%

(𝐶(𝑐, 𝑐′), 𝑉(𝐹(𝑐′), 𝑦))

≅ [𝐶, 𝑉](𝐶(𝑐, −), 𝑉(𝐹(−), 𝑦))
≅ 𝑉(𝐹(𝑐), 𝑦).

 

(The first isomorphism is by prop. 11, the second is prop. 12, the third is the tensor-hom 
adjunction, the fifth is the observation that 𝑦 makes 𝐶(𝑐, −) redundant.) The result then follows 
by the enriched Yoneda lemma. ■ 

The following result is formally dual: 

Proposition 14 (Yoneda reduction).  There is a natural isomorphism 

𝐹(𝑐′) ≅ D 𝑉
$∈%

(𝐶(𝑐′, 𝑐), 𝐹(𝑐)). 



Day Convolution 
We are motivated by the following example, a viewpoint illustrated by Campbell in their “Day 
Convolution Intuition” answer on Math Stack Exchange. 

Example 15.  Given a ring 𝑅 and a monoid 𝑀, we wish to extend the ring structure to 𝑅(5), the 
set of functions 𝑀 → 𝑅 of finite support. We require that 𝑅 → 𝑅(5) is a ring homomorphism, 
and 𝑀 → 𝑅(5) is a monoid homomorphism. In this way the resulting ring structure on 𝑅(5) 
becomes canonical. 

Let’s first consider a basis for 𝑅(5). We claim this is the set of 𝑒6 for 𝑚 ∈ 𝑀, where 𝑒6(𝑥) = 1 
if 𝑥 = 𝑚 and is 0 otherwise (for instance, see Yu’s article “Vector	Space	of	Functions	from	a	
Set	to	a	Vector	Space”). 

Addition is then well defined, and it remains to find a suitable multiplicative operation ∗ that 
makes 𝑅(5) into a ring. But given that 𝑀 → 𝑅(5) is a monoid homomorphism sending 𝑥 ↦ 𝑒7, 
and since we can shuffle constants around the multiplication operation, we are led to define 

𝑓 ∗ 𝑔 = XY 𝑓
7∈5

(𝑥)𝑒7Z ∗ [Y 𝑔
8∈5

(𝑦)𝑒8\

= Y 𝑓
7,8∈5

(𝑥)𝑔(𝑦)𝑒7 ∗ 𝑒8

= Y 𝑓
7,8∈5

(𝑥)𝑔(𝑦)𝑒78 .

 

In references, the standard way to define ∗ is 

𝑓 ∗ 𝑔(𝑚) = Y 𝑓
7896

(𝑥)𝑔(𝑦). 

But observe this is equivalent: 

Y 𝑓
7,8∈5

(𝑥)𝑔(𝑦)𝑒78(𝑚) = Y 𝑓
7896

(𝑥)𝑔(𝑦). 

We call the operation ∗ the convolution product. 

The Day convolution we are after is the categorification of this concept. 

Example 16.  Rather than the set of functions from a monoid 𝑀 to a ring 𝑅, we are concerned 
with endowing a multiplicative operation to the functors from a category 𝐶op to a category 𝑉 (i.e. 
𝑉-valued presheaves). 

By the co-Yoneda lemma (lemma 13), every 𝑉-valued presheaf 𝐹: 𝐶op → 𝑉 is a colimit of 
representable presheaves: 



𝐹(−) ≃ D 𝐹
$∈%

(𝑐) ⊗
3
𝑉(−, 𝑐). 

Thus we can think of the set of such colimits as a “basis” for the presheaf category [𝐶op, 𝑉]. 
Since we require ∗ to be canonically defined, we calculate 

𝐹 ∗ 𝐺 ≃ ]D 𝐹
$!∈%op

(𝑐.) ⊗
3
𝑉(−, 𝑐.)^ ∗ ]D 𝐺

$"∈%op

(𝑐/) ⊗
3
𝑉(−, 𝑐/)^

≃ D 𝐹
($!,$")∈%op×%op

(𝑐.) ⊗
3
𝐺(𝑐/) ⊗

3
𝑉(−, 𝑐.) ∗ 𝑉(−, 𝑐/)

≃ D 𝐹
($!,$")∈%op×%op

(𝑐.) ⊗
3
𝐺(𝑐/) ⊗

3
𝑉(−, 𝑐.⊗

%
𝑐/).

 

We now cover the assumptions needed to calculate as we did. First, we require 𝐶 and 𝑉 to be a 
monoidal categories with respect to some tensor products ⊗%  and ⊗3. We used Fubini’s 
theorem for coends (prop. 10) and so ⊗3 needs to be cocontinuous in each variable. 
Furthermore, that the coends exist at all is the assumption that 𝑉 is cocomplete. (The 
assumptions on 𝑉 can be summarized by saying that 𝑉 is monoidally cocomplete.) 

The following definition is more standard, appearing for instance in the Day convolution article 
on the nLab. It utilizes 𝐶 rather than 𝐶op, thus switching the covariant hom for a contravariant 
one. The ordering is also switched, which is fine as long we stay consistent. 

Definition 17 (Day convolution).  Let (𝐶,⊗% , 1) be a small 𝑉-enriched monoidal category. Then 
the Day convolution tensor product on [𝐶, 𝑉] 

⊗
Day
: [𝐶, 𝑉] × [𝐶, 𝑉] → [𝐶, 𝑉] 

is given by 

𝑋 ⊗
-;8

𝑌: 𝑐 ↦ D 𝐶
($!,$")∈%×%

(𝑐.⊗
%
𝑐/, 𝑐) ⊗

3
𝑋(𝑐.) ⊗

3
𝑌(𝑐/). 

A Left Kan Extension 
Given a functor 𝑝: 𝐶 → 𝐶′, it is typically interesting to understand the extension problem, i.e. 
whether any functor 𝐹: 𝐶 → 𝐷 can be extended to a functor 𝐹′: 𝐶′ → 𝐷: 

	
This is a very strong (and useful!) property to have. So even when we don’t have this property, 
we are still interested in approximating the functor 𝐹′, even if it means fixing a single functor 𝐹. 
Kan extensions seek to do just that. There are many types of Kan extensions, which all coincide 



in the best case scenario. For our purposes, we are interested in the following, taken from the 
Kan extension nLab article: 

Definition 18 (Local Kan extensions).  Given a functor 𝑝: 𝐶 → 𝐶′, we have an induced functor 
𝑝∗: [𝐶′, 𝐷] → [𝐶, 𝐷] given by precomposition by 𝑝. 

A left Kan extension of 𝐹 along 𝑝 is then a functor Lan<𝐹: [𝐶′, 𝐷] such that 

Hom[%,-](𝐹, 𝑝∗(−)) ≅ Hom[%4,-](Lan<𝐹,−) 

is a natural isomorphism. 

Perhaps more intuitively, Lan<𝐹 is a corepresentation of Hom[%,-](𝐹, 𝑝∗(−)). 

Remark 19.  Def. 18 is a specific case of what are called global Kan extensions. 

Proposition 20.  The left Kan extension is given by the coend 

(Lan<𝐹): 𝑐′ ↦ D 𝐶
$∈%

′(𝑝(𝑐), 𝑐′) ⊗
-
𝐹(𝑐). 

Proof. It suffices to show [𝐶′, 𝐷](Lan<𝐹, 𝐺) ≅ [𝐶, 𝐷](𝐹, 𝑝∗(𝐺)). We calculate: 

(Lan<𝐹, 𝐺) = D 𝐷
$4∈%4

(Lan<𝐹(𝑐′), 𝐺(𝑐′))

= D 𝐷
$4∈%4

]D 𝐶
$∈%

′(𝑝(𝑐), 𝑐′) ⊗
-
𝐹(𝑐), 𝐺(𝑐′)^

= D D 𝐷
$∈%$4∈%4

(𝐶′(𝑝(𝑐), 𝑐′) ⊗
-
𝐹(𝑐), 𝐺(𝑐′))

= D D 𝐷
$4∈%4$∈%

(𝐹(𝑐), 𝐷(𝐶′(𝑝(𝑐), 𝑐′), 𝐺(𝑐′)))

= D 𝐷
$∈%

(𝐹(𝑐),D 𝐷
$4∈%4

(𝐶′(𝑝(𝑐), 𝑐′), 𝐺(𝑐′)))

= D 𝐷
$∈%

(𝐹(𝑐),D 𝐷
$4∈%4

(𝐶′(𝑝(𝑐), 𝑐′), 𝐺(𝑐′)))

= [𝐶, 𝐷](𝐹, 𝑝∗𝐺).

 

(The first step is ex. 6, the second step is our assumption, the third is ex. 7, the fourth is Fubini, 
thm. 10, along with the tensor-hom adjunction, the fifth is ex. 7 again, the sixth is Yoneda 
reduction, prop. 14, and the seventh is ex. 6 again.) ■ 

Definition 21.  For 𝐶 a small 𝑉-monoidal category, its external tensor product 

⊗: [𝐶, 𝑉] × [𝐶, 𝑉] → [𝐶 × 𝐶, 𝑉] 

given by 



𝑋 ⊗ 𝑌 ≔⊗
3
∘ (𝑋, 𝑌),

(𝑋 ⊗ 𝑌)(𝑐., 𝑐/) = 𝑋(𝑐.) ⊗
3
𝑌(𝑐/).

 

The key result: 

Proposition 22.  The Day convolution (def. 17) of two functors 𝐹 and 𝐺 is isomorphic to the left 
Kan extension of their external tensor product along ⊗%: 

𝐹 ⊗
Day

𝐺 ≅ Lan⊗
#
(𝑋 ⊗ 𝑌). 

In other words, the Day convolution can be thought of as a left Kan extension. 

Proof. This is immediate by spelling out definitions: 

Lan⊗
#
(𝐹 ⊗ 𝐺)(𝑐) ≅ D 𝐶

$!,$"∈%
(𝑐.⊗

%
𝑐/, 𝑐) ⊗

3
(𝐹 ⊗ 𝐺)(𝑐., 𝑐/)

= D 𝐶
$!,$"∈%

(𝑐.⊗
%
𝑐/, 𝑐) ⊗

3
𝐹(𝑐.) ⊗

3
𝐺(𝑐/).

 

 ■ 

Remark 23.  Intuitively, we are approximating the external tensor product. 

Corollary 24.  There are natural isomorphisms 

[𝐶, 𝑉](𝐹 ⊗
Day

𝐺,𝐻) ≅ [𝐶 × 𝐶, 𝑉](𝐹 ⊗ 𝐺,𝐻 ∘⊗
%
). 

Remark 25.  The point is, the structure associated to Day convolution can be rather abstract. The 
external tensor product and tensor product with respect to 𝐶 can oftentimes be more tractable. 

A particularly notable example of the usefulness of cor. 24 is in determining monoids with 
respect to the Day convolution. Certain functors (e.g. strong monoidal functors) arise as having 
the form on the right side of the natural isomorphism in cor. 24. Thus these functors themselves 
can be monoids with respect to the Day convolution. A notable example is functors with smash 
product arising arising in the construction of a symmetric monoidal smash (tensor) product of 
spectra via full subcategory inclusions from the category of pre-excisive functors (e.g. 
orthogonal, symmetric spectra). For details, see the Introduction	to	Stable	homotopy	theory	--	
1-2	article	on	the	nLab. 
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