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Unless otherwise stated, the field of scalars is assumed to be C.

1 Banach algebras

Definition 1.1. A Banach algebra is a Banach space A paired with an associative, distribu-
tive multiplication such that

• (linearity) λ(ab) = (λa)b = a(λb)
• (continuity) ‖ab‖ ≤ ‖a‖ · ‖b‖

for all a, b ∈ A and all λ ∈ C.

The following justifies the way we describe the second condition (though strictly speaking
the second condition is stronger than continuity):

Proposition 1.2. Multiplication in a Banach algebra A is continuous (as a function A×A→
A).

Proof. If xn → x and yn → y in A, then

‖xnyn − xy‖ =‖(xn − x)y + (yn − y)xn‖
≤‖xn − x‖ · ‖y‖+ ‖yn − y‖ · ‖xn‖
→0.

So xnyn → xy.

1.1 units

As one might expect, a unit 1A ∈ A is an element such that a1A = 1Aa = a for any a ∈
A. There is a connection between non-unital Banach algebras and unital Banach algebras,
specifically in that we can embed any non-unital Banach algebra into a unital one as an ideal
of codimension 1.

Corollary 1.3. If A has a unit, then the unit is unique.

Proof. Let 1A, 1
′
A be units. Then 1A = 1A1′A = 1′A1A = 1′A.
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We would typically expect a unit to have norm 1. However, this is not always the case.
The situation isn’t far from this, however. We will show it is always true that ‖1A‖ ≥ 1.
Furthermore, we can replace the norm on A with an equivalent one in which the (new) norm
of 1A is 1.

Proposition 1.4. If A is a unital Banach algebra, then ‖1A‖ ≥ 1.

Proof. Since 1A = 12
A, it follows ‖1A‖ ≤ ‖1A‖ · ‖1A‖. Such an inequality on real numbers

only holds for numbers ≥ 1, hence the result.

Lemma 1.5. If A is a unital Banach algebra, then there exists an equivalent norm n on A
such that A is unital and n(1A) = 1.

Proof. For x ∈ A, consider the left multiplication operator Lx : y 7→ xy.

Claim 1.6. Lx is injective, bounded, and linear.

Proof of claim. For injectivity, suppose Lx = Lx′ . Then in particular x = x1A = x′1A = x′.
For linearity, note

Lλx+yz = (λx+ y)z = λxz + yz = (λLx + Ly)(z).

For boundedness, note
‖Lxy‖ = ‖xy‖ ≤ ‖x‖ · ‖y‖,

so Lx is bounded and in particular ‖Lx‖ ≤ ‖x‖.

We now set
n(x) = ‖Lx‖.

First let us show this norm is equivalent to ‖ · ‖. By the above, we already have n(x) ≤ ‖x‖.
Conversely,

n(x) =‖Lx‖ = sup{‖Lxy‖ : ‖y‖ ≤ 1}
= sup{‖xy‖ : ‖y‖ ≤ 1}

≥‖xy′‖ (setting y′ =
1A
‖1A‖

)

=
‖x‖
‖1A‖

.

In total,
‖x‖
‖1A‖

≤ n(x) ≤ ‖x‖

which proves equivalence.

Now let us show n(−) makes A a Banach algebra. Completeness follows by equivalence, and
for all x, y ∈ A we have

n(xy) =‖Lxy‖ = ‖LxLy‖
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≤‖Lx‖ · ‖Ly‖ = n(x)n(y).

Thus A is a Banach algebra under n(−). ref
bounded
oper-
ators
are
ba-
nach
alge-
bra

Finally, we check that n(1A) = 1:

n(1A) =‖L1A‖
= sup{‖L1Ay‖ : ‖y‖ ≤ 1} = sup{‖y‖ : ‖y‖ ≤ 1}
=1.

This concludes the proof.

Lemma 1.7. If A is a non-unital Banach algebra, then it can be embedded into a unital
Banach algebra AI as an ideal of codimension 1.

Remark 1.8. As our construction will show, ‖1AI‖ = 1. We don’t mention it in the
statement above because, by Lemma  1.5 we could always modify AI so that this is the case.

Proof. Let AI = A⊕ C. Define multiplication on AI as follows:

(x, λ)(y, µ) = (xy + µx+ λy, λµ).

One checks this is associative and distributive. Also (0, 1) is a unit:

(x, λ)(0, 1) = (x0 + x+ λ0, λ1) = (x, λ).

We now define the norm on AI as follows:

‖(x, λ)‖ = ‖x‖+ |λ|.

Note ‖(0, 1)‖ = 1. Let us now verify that this norm makes AI into a Banach space: suppose
a sequence {(xn, λn)} ⊂ AI is Cauchy. Then for any ε > 0 there exists N > 0 such that for
all n,m ≥ N we have ‖(xn, λn)− (xm, λm)‖ < ε. But then

‖(xn − xm, λn − λm)‖ = ‖xn − xm‖+ |λn − λm| < ε,

so both (xn) ⊂ A and (λn) ⊂ C are Cauchy, hence convergent. Say xn → x and λn → λ.
Then we can find N ′ > 0 such that

‖(xn, λn)− (x, λ)‖ = ‖xn − x‖+ ‖λn − λ‖ <
ε

2
+
ε

2
= ε.

This shows completeness.

Now let us check this norm makes AI a Banach algebra:

‖(x, λ)(y, µ)‖ =‖(xy + µx+ λy, λµ)‖ = ‖xy + µx+ λy‖+ ‖λµ‖
≤‖x‖ · ‖y‖+ |µ| · ‖x‖+ |λ| · ‖y‖+ |λ| · |µ|
=(‖x‖+ |λ|)(‖y‖+ |µ|)
=‖(x, λ)‖ · ‖(y, µ)‖.
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Hence AI is a Banach algebra with unit.

All that is left is to identify A is a codimension 1 ideal in AI . The mapping x 7→ (x, 0) is
an isometric isomorphism between A is the set M := {(x, 0) : x ∈ A} ⊂ AI . This set is
codimension one, and an ideal since

(y, λ)(x, 0) =(yx+ λx, 0) ∈M,

(x, 0)(y, λ) =(xy + µx, 0) ∈M.

This concludes the proof.

1.2 invertible elements

In a unital Banach algebra A, the inverse of a, if it exists, is such that a−1a = aa−1 = 1A.
There are two initial complications: the lack of a commutativity assumption means an
element could satisfy one of the above conditions when multiplying on the left but not the
right. The second is uniqueness.

We will write G(A) for the set (in fact, group) of invertible elements. Elements which are
not invertible are called singular.

Proposition 1.9. Let x ∈ A. If l is a left inverse of x, i.e. lx = 1A, and r is a right inverse
of x, i.e. xr = 1A, then x ∈ G(A) and, in particular, l = r.

Proof. By assumption lx = xr = 1A. Then in particular r = (lx)r = l(xr) = l.

Proposition 1.10. G(A) ⊂ A is open.

Proof. Recall that if y ∈ A is such that ‖y‖ < 1, then

w =
∞∑
k=0

yk

exists by (Banach spaces, Proposition  5.1 ). Furthermore, w is the inverse of 1A − y by the
Neumann series (Banach spaces, Proposition  1.1 ). So if x ∈ A is such that ‖1A − x‖ < 1,
then since x = 1A − (1A − x) we get x−1 =

∑
k(1A − x)k.

We will show that for any x0 ∈ G(A) we have B( 1
‖x−1

0 ‖
, x0) ⊂ G(A), which will complete the

proof.

Now for any x0 ∈ G(A), we know x0x
−1
0 x = x. Also

‖1A − x−10 x‖ = ‖x−10 (x0 − x)‖ ≤ ‖x0‖−1 · ‖x0 − x‖.

If ‖x − x0‖ < ‖x−10 ‖−1 (i.e. x is in the ball described above), then the above inequality
becomes ‖1A − x−10 x‖ < 1 so we can apply our previous remarks to get x−10 x is invertible
and in particular

(x−10 x)−1 =
∞∑
k=0

(1A − x−10 x)k.

4



To show x ∈ G(A), we can write

(x−10 x)−1(x−10 x) =

(
∞∑
k=0

(1A − x−10 x)k

)
(x−10︸ ︷︷ ︸

x−1

x) = 1A.

This is a left inverse. A right inverse can be obtained analagously. By Proposition  1.9 this
suffices to show x ∈ G(A).

Corollary 1.11. The inversion function G(A)→ A is continuous.

Proof. Suppose (xn) ⊂ G(A) converges to x0 ∈ G(A). For large enough n, we get ‖xn−x0‖ <
1

‖x−1
0 ‖

. Then by the above proof

‖x−1n − x−10 ‖ =

∥∥∥∥∥
∞∑
k=0

((x−10 (x0 − xn))k)x−10

∥∥∥∥∥
≤
∞∑
k=0

(‖x−10 ‖ · ‖x0 − xn‖)k‖x−10 ‖

which tends to 0 since ‖x0 − xn‖ → 0. In other words, (x−1n )→ x−10 .

1.3 spectrum

Proposition 1.12. For x ∈ X, the resolvent set C− σA(x) is open.

Proof. We will show that for every λ0 ∈ C− σA(x), the open ball

B := B(λ0,
1

‖Rx(λ0)‖
)

is contained in C − σA(x). So let λ ∈ B. Then ‖(λ − λ0)Rx(λ0)‖ < 1, so Banach spaces
Proposition  1.1 implies

1− (λ− λ0)Rx(λ0)

is invertible. Since λ0 6∈ σ(x), it is also true that (x − λ01) is invertible. Combining these
facts, we can show that x− λ1 is invertible:

x− λ1 = x− λ01− (λ− λ0)1 = (x− λ01) · (1− (λ− λ0)Rx(λ0)).

Thus λ ∈ C− σA(x) and the result follows.

Proposition 1.13. σA(x) ⊂ C is closed and bounded:

σA(x) ⊂ {λ ∈ C : |λ| ≤ ‖x‖}.

In particular, it is compact.
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Proof. If |λ| > ‖x‖, then (x − λ1A) = −λ(1 − x
λ
) has an inverse provided by the Neumann

series (Banach spaces, Proposition  1.1 ) since ‖x
λ
‖ < 1. Hence σA(x) is bounded. It is closed

because its complement is open, by Proposition  1.12 .

Proposition 1.14. The resolvent function Rx is analytic (in the sense of Banach spaces,
Definition  5.3 ).

Proof. For this claim to even make sense, the domain of Rx must be open. This is Proposition
 1.12 . We need to show that Rx can be defined as a power series which converges absolutely
on an open disk centered at each λ0 ∈ C− σA(x). By the proof of Proposition  1.12 , we can
take the disk of radius ‖Rx(λ0)‖−1.

Let λ ∈ C−σA(x). In the proof of Proposition  1.12 , we show that x−λ1) is invertible, and,
for λ0 in the disk described at the end of the previous paragraph,

x− λ1 = (x− λ0) · (1− (λ− λ0)Rx(λ0)).

Taking inverses of both sides,

Rx(λ) = Rx(λ0) · (1− (λ− λ0)Rx(λ0))
−1.

Now we can expand (1− (λ− λ0)Rx(λ0))
−1 as a Neumann series (Proposition  1.1 ) to get

Rx(λ) = Rx(λ0)
∞∑
n=0

Rx(λ0)
n(λ− λ0)n =

∞∑
n=0

Rx(λ0)
n+1(λ− λ0)n,

which shows that Rx can be expressed as an appropriate power series.

Theorem 1.15. σA(x) is nonempty.

Proof. Suppose σA(x) is empty. Then the resolvent is defined on all of C. It is analytic
(Proposition  1.14 ) and nonconstant. We claim it is also bounded. Note ‖x−1Aλ‖ ≤ ‖x‖+|λ|.
So ‖(x− 1Aλ)−1‖ is bounded by (‖x‖ + |λ|)−1. In particular, it is finite away from infinity.
It remains to show that it remains bounded as |λ| → ∞. Without loss of generality, suppose
|λ| > ‖x‖. Then, by the Neumann series (Banach spaces Proposition  1.1 ) we get

(x− 1Aλ)−1 =
−1

λ

(
1A −

x

λ

)−1
=

1

λ

∞∑
k=0

(x
λ

)k
.

Hence

‖(x− 1Aλ)−1‖ ≤ 1

|λ|

∞∑
k=0

(
‖x‖
|λ|

)k
=

1

|λ|
· 1

1− ‖x‖/|λ|
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=
1

|λ| − ‖x‖
.

This tends to 0 as |λ| → ∞, hence Rx is bounded.

We have shown Rx is entire, bounded, and nonconstant. Thus by Louisville’s theorem Rx = ref
0. But then (x−λ1A)−1 = 0, contradicting the fact that (x−λ1A)(x−λ1A)−1 = 1A 6= 0.

Proposition 1.16. Let A be a unital Banach algebra, and a ∈ A.

1. For any complex polynomial p, we have σA(p(a)) = p(σA(a)).

2. If a ∈ G(A), then σA(a−1) = σA(a)−1.

Proof. 1. Suppose deg(p) ≥ 1 (the other case is immediate). For any µ ∈ C, let (λi)
n
1 be

the complex roots of the polynomial p(−)− µ. In other words, for all z ∈ C, we have

p(z)− µ = α(z − λ1) · · · (z − λn)

for some α ∈ C. Then

p(a)− µ1A = α(a− λ11A) · · · (a− λn1A).

Claim 1.17. If (ai)
n
1 ⊂ A are mutually commuting, then the product a1 · · · an is

invertible if and only if each ai is invertible.

Proof of claim. In one direction, if each ai are invertible then a1 · · · an is invertible,
regardless even of the mutually commuting assumption.

Conversely, if the product a1 · · · an is invertible, then we can write down an inverse for
each ai. For example,

a2(a1a3 · · · an)(a1 · · · an)−1 =(a1 · · · an)−1(a1 · · · an)

=1A

=(a1 · · · an)−1(a1a3 · · · an)a2.

This shows the claim.

First we will show
σA(p(a)) ⊂ p(σA(a)).

Suppose µ ∈ σA(p(a)). Then by definition p(a)−µ1A is singular, so by the claim there
exists some i such that a− λi1A is singular. This would mean λi ∈ σA(a). But

p(λi)− µ = α(λi − λ1) · · · (λi − λn) = 0,

so p(λi) = µ. Hence µ ∈ p(σA(a)) as desired.

Now we will show
p(σA(a)) ⊂ σA(p(a)).
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Suppose λ ∈ σA(a), and write µ := p(λ) (so that µ ∈ p(σA(a))). Then again

p(z)− µ = α(z − λ1) · · · (z − λn),

so if z = λ then p(z)− µ = 0, i.e. p(z) = µ. By the above remarks we would get that
z = λ = λi for some i. Hence (a− λi1A) is singular, since (a− λ1A) is by assumption.
By the claim, we get that

p(a)− µ1A = α(a− λ11A) · · · (a− λn1A)

is singular. This shows µ := p(λ) ∈ σA(p(a)), which is what we wanted.

2. If a ∈ G(A), then by definition 0 6= σA(a). For any λ ∈ C which is nonzero, we get

a− λ1A = a(1A − λa−1) = aλ(λ−11A − a−1).

Since aλ is invertible, it follows that a − λ1A is invertible if and only if λ−11A − a−1
is invertible, which is only the case if its negative a−1 − λ−11A is invertible. This is
precisely the statement in the proposition.

Corollary 1.18. σA(−a) = −σ(a).

Proposition 1.19. Let R be a unital ring. The element 1 − yx is invertible if and only if
1− xy is invertible. In particular,

(1− yx)−1 = 1− y(1− xy)−1x.

move
to dif-
ferent
docu-
ment

Proposition 1.20. Let A be a unital Banach algebra. Then

σA(xy) ∪ {0} = σA(yx) ∪ {0}.

Proof. Let λ ∈ C be nonzero. Then

λ ∈ σA(xy)⇐⇒λ1A − xy invertible

⇐⇒λ
(

1A −
xy

λ

)
invertible.

But by Propostion  1.19 , this is only possible if

λ
(

1A −
yx

λ

)
= λ1A − yx

is invertible, i.e. if and only if λ ∈ σA(yx).

Proposition 1.21. Let A be a unital Banach algebra, and a, b ∈ A. Then ab− ba 6= 1A.
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Proof. Suppose ab− ba = 1A. One one hand, Proposition  1.20 says

σA(ab) ∪ {0} = σA(ba) ∪ {0}.

But on the other hand
σA(ab) = σA(1A + ba) = 1 + σA(ba)

by . This suggests ref
{1 + σA(ba)} ∪ {0} = σA(ba) ∪ {0},

which we will now show is a contradiction.

First suppose α ∈ σA(ba) is such that Re(α) ≥ 0. Then 1 + α 6= 0, so (1 + α) ∈ {1 +
σA(ba)} \ {0}, implying by the above equality that 1 + α ∈ σA(ba). Inductively we show
n+ α ∈ σA(ba) for all n, contradicting the boundedness of σA(ba) (Proposition  1.13 ).

Now suppose Re(α) < 0. Observe −α ∈ σA(−ba), and Re(−α) > 0, so we reach a contra-
diction by the above situation. correct?

Theorem 1.22 (Gelfand-Mazur). Let A be a unital Banach algebra. If every nonzero
element is invertible, then A = C.

Proof. Let x ∈ A. Then σA(x) 6= ∅ so there exists λ ∈ C such that x − λ1A 6∈ G(A). By
assumption this means x− λ1A = 0, so x = λ1A.

Theorem 1.23 (Gelfand’s formula).

ρ(x) = lim sup
n
‖xn‖1/n.

Proof. First we will show ρ(x) ≤ lim supn ‖xn‖1/n. Indeed, if |λ| > lim supn ‖xn‖1/n, then
lim supn ‖λ−nxn‖ < 1 so, by Banach spaces Proposition  1.3 , (λ1 − x)−1 exists. Since this
is true for all λ such that |λ| > lim supn ‖xn‖1/n, it must be that lim supn ‖xn‖1/n ≥ ρ(x)
(else there would be a λ for which (λ1−x) is not invertible, contradicting what we have just
shown).

Conversely, suppose λ is such that |λ| > ρ(x).

Claim 1.24.

lim
n→∞

φ

(
xn

λn+1

)
= 0.

Proof. By Proposition  1.14 , the resolvent is analytic on the set of λ such that |λ| > ρ(x). By
the uniqueness of the Laurent expansion () and Banach spaces Corollary  1.3 , we must have ref

(λ1− x)−1 =
∞∑
k=0

xk

λk+1
.
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Let φ ∈ X∗. Since (λ1− x)−1 exists, so must φ((λ1− x)−1), i.e.

φ

(
∞∑
k=0

xk

λk+1

)
=
∞∑
k=0

φ

(
xk

λk+1

)
is convergent, where we have used the continuity and linearity of φ. The result follows.

Define

Tn : X∗ → C

φ 7→ φ

(
xn

λn+1

)
for all n ∈ N. Since each Tn is an evaluation map, it is continuous and linear. We also have
that X∗ (and C) are Banach. Claim  1.24 implies

sup
T∈{Tn}

‖T (φ)‖ <∞

for all φ ∈ X∗. Hence by the uniform boundedness principle (Banach spaces Theorem  3.9 )

sup
T∈{Tn}

‖T‖ <∞.

Let’s unwrap what this gives us. By definition

‖T‖ = sup
‖φ‖=1

∥∥∥∥φ( xn

λn+1

)∥∥∥∥ =
1

λn+1
sup
‖φ‖=1

‖φ(xn)‖.

Also by definition,

‖φ‖ = sup
x 6=0

|φ(x)|
‖x‖

,

so ‖φ‖ = 1 means, in particular, ‖φ(xn)‖ ≤ ‖xn‖. By , there actually exists φ such that ref
norm-
ing
func-
tional

‖φ(xn)‖ = ‖xn‖ and ‖φ‖ = 1. Hence

sup
‖φ‖=1

‖φ(xn)‖ = xn.

Pulling it all together, we have

‖T‖ =

∥∥∥∥ xn

λn+1

∥∥∥∥ .
Since this is true for all n, the sequence (xn/λn+1) is bounded, i.e. there exists α > 0 such
that ‖xn/λn+1‖ < α for all n. Hence ‖xn‖1/n < α1/n|λ|n+1/n. Then

lim sup
n
‖xn‖1/n ≤ lim sup

n
α1/n|λ|n+1/n = |λ|.

Since we chose |λ| > ρ(x) arbitrarily, we have shown

lim sup
n
‖xn‖1/n ≤ ρ(x),

completing the proof.
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1.4 constructing Banach algebras

Proposition 1.25. Let A be a Banach algebra, and V a closed 2-sided ideal. Then A/V
is a Banach algebra. If moreover A is unital and V is proper, then A/V is unital and
1A/V ≤ ‖1A‖.

Proof. By Banach spaces, Proposition  2.5 , we know A/V is a Banach space.

We first claim A/V is an algebra with respect to the multiplication [x] · [y] = [xy]. Indeed,
if x′ ∼ x and y′ ∼ y, then

xy − x′y′ = (x− x′)y + x′(y − y′) ∈ V

since V is a 2-sided ideal.

For the Banach inequality, we calculate

‖[x] · [y]‖ =‖[xy]‖ = inf
v∈V
‖xy + v‖

≤ inf
v,w∈V

‖xy + xw + vy + vw︸ ︷︷ ︸
∈V

‖

= inf
v,w∈V

‖(x+ v)(y + w)‖

≤ inf
v,w∈V

‖x+ v‖ · ‖y + w‖

=‖[x]‖ · ‖[y]‖.

Thus A/V is a Banach algebra.

Now suppose A is unital and V is proper. Immediately we have [1A] · [b] = [b], so [1A] is a
unit. Furthermore,

‖[1A]‖ = inf
v∈V
‖1A + v‖ ≤ ‖1A‖

by taking v = 0.

1.5 Gelfand theory

Proposition 1.26. Every maximal ideal in a unital Banach algebra is closed.

Proof. Let J ⊂ A be a maximal ideal. Then J cannot contain any invertible element
(otherwise J = A). Hence J ⊂ A \ G(A). By Proposition  1.10 , G(A) ⊂ A is open, so
A \ G(A) is closed, hence

J ⊂ J ⊂ A \ G(A).

In particular, J 6= A. Since J is maximal and J is also an ideal, it follows that J = J .

Definition 1.27. Let A be a Banach algebra. A nonzero homomorphism A→ C is called a
character of A. The set of all characters on A is called the spectrum, and denoted Sp(A).

Corollary 1.28. For a unital Banach algebra A and any ` ∈ Sp(A), we have `(1A) = 1.
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Proof. We calculate
φ(a) = φ(a1A) = φ(a)φ(1A),

so φ(1A) = 1.

Corollary 1.29. Let A be a unital Banach algebra, and ` : A → C a character. For any
a ∈ A, we have `(a) ∈ σA(a).

Proof. First calculate
`(a− `(a)1A) = `(a)− `(a) = 0.

Now if a− `(a)1A has an inverse b, then

`((a− `(a)1A)b) = `(a− `(a)1A)`(b) = 0 · b = 0,

contradicting Corollary  1.28 .

Proposition 1.30. Every character φ on a Banach algebra is continuous. In particular,
‖φ‖∞ ≤ 1.

Proof. Let A be a Banach algebra, and φ a character. First suppose A is unital. For any
a ∈ A such that φ(a) 6= 0, Corollary  1.29 tells us that φ(a) ∈ σA(a). Proposition  1.13 tells
us that |φ(a)| ≤ ‖a‖. The inequality still holds if φ(a) = 0. Hence φ is continuous. Now
suppose A is non-unital. Consider its unitization AI = A⊕ C, and the map ref

φ′ : AI −→ C
(a, λ) 7→ φ(a) + λ.

One checks this is a homomorphism. It is continuous by the previous paragraph, hence its
restriction to A (which is φ) is continuous as well.

Theorem 1.31 (character correspondence). Let A be a commutative unital Banach algebra.
There is a canonical bijection{

characters
of A

}
←→

{
maximal ideals

of A

}
` 7→ ker(`)

Proof. The idea is that kernels are maximal ideals, and conversely every element outside
a maximal ideal J is invertible, hence by the Gelfand-Mazur theorem A/J ∼= C. Then
composition with the projection A→ A/J uniquely determines a character. In detail:

Let ` : A→ C be a character, and write J = ker(`). Since ` is nonzero by definition, J 6= A,
so there exists a 6∈ J . Then any b ∈ A can be written as

b = a
`(b)

`(a)
+

(
b− a `(b)

`(a)

)
.
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Note b− a `(b)
`(a)
∈ ker(`) = J , since

`

(
b− a `(b)

`(a)

)
= `(b)− `(a)

`(b)

`(a)
= 0.

Since b ∈ A is arbitrary, this shows A = Ca+ J . Since J is codimension 1 it is maximal . better
proof

Conversely, suppose J is maximal. By Proposition  1.26 , J is closed, hence by Proposition
 1.25 we have that A/J is a Banach algebra.

Claim 1.32. Every nonzero [a] ∈ A/J is invertible. separate

Proof of claim. Suppose [a] is not invertible. Then J + aA is a proper ideal of A containing
J , contradicting the maximality of J .

By the claim, every (nonzero) element in A/J is invertible. Hence by the Gelfand-Mazur
theorem (Theorem  1.22 ), there is an isomorphism φ : A/J → C. Now let π : A → A/J be
the canonical projection. Then φ ◦ π : A→ A/J → C is a homomorphism with kernel J :

φ ◦ π(ab) =φ(π(ab)) = φ([ab])

=φ([a][b]) = φ([a])φ([b])

=(φ ◦ π(a))(φ ◦ π(b)),

where φ ◦ π(a) = 0 if and only if π(a) = 0, if and only if a ∈ J .

This correspondence is one-to-one since ` is uniquely determined by its kernel: if ker(`) =
ker(`′), then for all a ∈ A we have a − `(a)1A ∈ ker(`) = ker(`′), so `′(a) = `(a) since
`′(1A) = 1.

Proposition 1.33. Any commutative unital Banach algebra posseses at least one character.

Proof. If every element is invertible, then A ∼= C by the Gelfand-Mazur theorem (Theorem
 1.22 ), and this isomorphism is itself a character.

Otherwise, there exists a noninvertible x ∈ A. Then xA ⊂ A is a proper ideal, hence
contained in some maximal ideal J . By the character correspondence (Theorem  1.31 ), J is ref
the kernel of a character on A.

Definition 1.34. The set of characters of a commutative unital Banach algebra A is called
the spectrum of A, and is denoted Sp(A).

The natural topology in which to consider Sp(A) is the weak*-topology (Banach spaces,
Definition  2.1 ):

Proposition 1.35. Sp(A) ⊂ A is compact in the weak*-topology. In particular, it is a
(weak*-)closed subset of the unit ball in A∗.
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Proof. By Proposition  1.30 , we know that any character is bounded with norm ≤ 1, hence
Sp(A) is contained in the unit ball in A∗.

Now suppose (`α) ⊂ Sp(A) is a net converging to φ ∈ A∗. Then by definition of the weak*-
topology, `α(x)→ φ(x) for all x ∈ A. But then, for all x, y ∈ A,

φ(xy) = lim `α(xy) = lim `α(x)`α(y) = φ(x)φ(y).

Hence φ ∈ Sp(A), so Sp(A) is a closed subset of the unit ball in A∗. Since the unit ball is
compact in the weak*-topology by the Banach-Alaoglu theorem (Banach spaces, Theorem
??), it follows that Sp(A) is compact.

Definition 1.36. Let A be a commutative unital Banach algebra. For each x ∈ A, we can
consider the “evaluation” map x̂ : Sp(A)→ C, i.e. the map whose value on ` ∈ Sp(A) is

x̂(`) = `(x).

Varying over all x, we obtain a map

X
(̂−)−→ C(Sp(A))

x 7→ (`
x̂7→ `(x)).

called the Gelfand transform.

Theorem 1.37. Let A be a commutative unital Banach algebra.

1. For any x ∈ A,
Im(x̂) = σA(x).

If moreover x generates A, i.e. the polynomials in x are dense in A, then the map x̂ is
a homeomorphism.

2. The Gelfand transform (̂−) : A → C(Sp(A)) is a homomorphism (in particular, each
x̂ is continuous) and

‖x̂‖∞ ≤ ‖x‖

for all x ∈ A.

Proof.

1. Corollary  1.29 tells us that Im(x̂) ⊂ σA(x). Conversely, let x ∈ σA(x). So x − λ1A is
not invertible, so it belongs to some maximal ideal J . By the character correspondence
(Theorem  1.31 ), there exists a (unique) ` ∈ Sp(A) such that ker(`) = J . Then x−λ1A ∈
J miplies `(x − λ1A) = 0, which implies `(x) = λ. Hence λ ∈ Im(x̂), which shows
σA(x) ⊂ Im(x̂).

2. To see that the Gelfand transform is a homomorphism, compute

x̂y(`) = `(xy) = `(x)`(y) = x̂(`)ŷ(`).

14



To see that x̂ is continuous, let (`α) ⊂ Sp(A) is a net converging to `. Then by definition
of the weak*-topology,

x̂(`α) = `α(x)→ `(x) = x̂(`).

This shows x̂ is continuous.

The inequality is implied by the first part.

Corollary 1.38. Let A be a commutative unital Banach algebra generated by a ∈ A. Then
â : Sp(A)→ σA(a) ⊂ C is a homeomorphism.

Proof. By Propositions  1.35 and  1.13 , both Sp(A) and σA(a) are compact Hausdorff. By
Theorem  1.37 , â is continuous and surjective in this case. By , it suffices to show â is ref

that
cts bij
be-
tween
com-
pact
haus-
dorff
is
homeo

injective. So suppose â(`1) = â(`2), i.e. `1(a) = `2(a). Then for any c0, c1, . . . , cN ⊂ C, so

`1

(
N∑
n=0

cna
n

)
= `2

(
N∑
n=0

cna
n

)
.

Since `1, `2 are continuous and a generates A, we have `1 = `2 and are done.

2 C∗-algebras

Definition 2.1. Consider a Banach algebra A with an involution a 7→ a∗ such that
1. (conjugate linear) (λa)∗ = λa∗.
2. a∗∗ = a
3. (ab)∗ = b∗a∗

4. (continuity) ‖a∗‖ = ‖a‖
5. (C∗-property) ‖a∗a‖ = ‖a‖2.

If A satisfies properties 1-4, it is called a Banach ∗-algebra. If A satisfies all properties 1-5,
it is called a C∗-algebra.

Definition 2.2. An element a in a C∗-algebra is called:
• self-adjoint if x∗ = x.
• a projection if it is self-adjoint and x2 = x.
• normal if a∗a = aa∗.
• unitary if it is normal and aa∗ = a∗a = 1A.

Corollary 2.3 (real-imaginary decomposition). Given a C∗-algebra A, we can decompose
any x ∈ A as follows:

x =
1

2
(x+ x∗) + i

1

2i
(x− x∗).

This is the unique decomposition of x as x = h+ ik where h, k are self-adjoint.

Proof. If we can write x = h + ik, then x∗ = h − ik. Solving for h, k yields the desired
result.
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Definition 2.4. Given a unital C∗-algebra A and an element x ∈ A, write A(x) for the unital
C∗-algebra generated by x, i.e. the closure in A of the ∗-algebra of complex polynomials in
x, x∗, and 1A.

Corollary 2.5. A(x) is commutative if and only if x is normal.

Proposition 2.6. Let A be a unital C∗-algebra, and h ∈ A self-adjoint. Then σA(h) ⊂ R.

Proof. The idea is the following. A(h) is commutative unital. Consider the exponential
ut = eith ∈ A(h). One shows ‖ut‖ = 1 for all t ∈ R. Since for any ` ∈ Sp(A(h)) we have
‖`‖ ≤ 1, we get |`(ut)| ≤ ‖ut‖ = 1. We then use the continuity of ` to show `(ut) = u`(t). So
we end up with an inequality |exp(it`(h))| ≤ 1 for all t ∈ R. This will imply that `(h) ∈ R,
and hence we conclude that ĥ is real-valued. We now use the fact that A(h) is commutative
unital to know that σA(h)(h) = im(ĥ). But σA(h) ⊂ σA(h)(h) and we’re done. In detail:

Suppose h ∈ A is self-adjoint. By Corollary  2.5 , A(h) is a commutative, unital C∗-algebra.
For t ∈ R, write

ut := eith :=
∞∑
n=0

(it)n

n!
hn,

which is well-defined by . By the continuity of the involution, add
and
refu∗t = lim

n→∞

(
n∑
k=0

(it)k

k!
hk

)∗
= lim

n→∞

∞∑
k=0

(−it)k)
k!

hk

=u−t

So
u∗tut = u−tut = u0 = 1A,

and 1 = ‖u∗tut‖ = ‖ut‖2, implying ‖ut‖ = 1 for all t ∈ R.

Proposition  1.30 tells us that ‖`‖ ≤ 1, so |`(ut) ≤ ‖ut‖ = 1. Now let ` ∈ Sp(A(h)). Also by
Proposition  1.30 , ` is continuous, and so

`(ut) = `

(
∞∑
n=0

(it)n

n!
hn

)
=
∞∑
n=0

(it)n

n!
`(h)n = eit`(h).

Combining these results tells us that |eit`(h)| ≤ 1 for all t ∈ R. But this implies `(h) ∈ R
(since, for example, |ez| ≤ 1 implies Re(z) ≤ 0, and our statement is true for all t ∈ R hence
Re(`(h)) = 0).

So ĥ is real-valued. By Theorem  1.37 , σA(h)(h) = Im(ĥ), so σA(h)(h) ⊂ R. But A(h) ⊂ A, so
we also have σA(h) ⊂ σA(h)(h), so σA(h) ⊂ R as desired.

Theorem 2.7 (Gelfand-Naimark). Let A be a commutative unital Banach ∗-algebra. The
Gelfand transformation

(̂−) : A −→ C(Sp(A))

is an isometric ∗-isomorphism if and only if A is a C∗-algebra.
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Proof. The idea is the following. For the forward direction, recall that C(Sp(A)) is a C∗-
algebra by . So if A is isometrically ∗-isomorphic to it, then so is A. Conversely, you can ref ex

use the real-imaginary decomposition of x ∈ A to show (̂−) is a ∗-homomorphism. To see it
is isometric (hence injective), we start with self-adjoint h ∈ A and see

‖ĥ‖∞ = ρ(h) = lim sup
n
‖h2n‖1/2n = ‖h‖.

The extension to general x ∈ A is obtained by considering the self-adjoint element xx∗. To

see it is surjective, we see first note that im((̂−)) is closed, then that it seperates points,
hence is dense in, and in fact equal to, C(Sp(A)). In detail:

We will just consider the converse direction. Suppose A is a C∗-algebra. By Proposition  2.6 ,
for any self-adjoint h ∈ A we have σA(h) ⊂ R, i.e. ĥ is real valued (e.g. by Theorem  1.37 ).
By Corollary  2.3 we can write

x =
1

2
(x+ x∗) + i

1

2i
(x− x∗)

for any x ∈ A. Then

x̂∗(`) =`(x∗) = `

(
x+ x∗

2
− i(x− x

∗)

2i

)
=`

(
x+ x∗

2

)
− i`

(
x− x∗

2i

)
=

(
`

(
x+ x∗

2

)
+ i`

(
x+ x∗

2i

))−
=`(x) = x̂(`).

This shows (̂−) is a ∗-homomorphism.

Now we will show (̂−) is isometric (which will also show it is injective). First we will show
it is isometric on self-adjoint elements. Let h ∈ A be self-adjoint. By the C∗-property,
‖h‖2n = ‖h2n‖. Thus

‖ĥ‖∞ = ρ(h) = lim sup
n
‖h2n‖1/2n = ‖h‖,

where we have used and Theorem  1.23 . This shows (̂−) is an isometric on self-adjoint ref
elements. In the general case, let x ∈ A. Then

‖x̂‖2∞ =‖x̂x̂‖∞ = ‖x̂∗x‖∞
=‖x∗x‖ = ‖x‖2,

where we have used the fact that x∗x is self-adjoint and the C∗-algebra property. So (̂−) is
isometric on all of A.

It remains to show (̂−) is surjective. Since A is complete and (̂−) is an isomorphism,

Im((̂−)) is closed in C(Sp(A)) . In fact, it is a closed ∗-subalgebra with unit, since (̂−) is a ref
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∗-homomorphism. We claim im((̂−)) seperates points of Sp(A). Indeed, for any `1 6= `2 in
Sp(A), by definition there exists x ∈ A such that `1(x) = `2(x), i.e. x̂(`1) 6= x̂(`2). Then, by

the Stone-Weierstrass theorem (), im((̂−)) ⊂ C(Sp(A)) is dense. Since it is also closed, we ref
have equality and we are done.

Theorem 2.8. Let A be a unital C∗-algebra, and x ∈ A an invertible element. Then x−1

belongs to the C∗-subalgebra of A generated by 1A, x, x
∗ (i.e. the closure of A in the set of

complex polynomials in 1A, x, x
∗).

Proof. The idea is the following. We will first consider a self-adjoint element x. In this
case, we can actually show that x−1 is in the algebra generated by x. To see this, we let
A be the algebra generated by x, and B be the algebra generated by x−1. Since x and x−1

commute, B is commutative, so it is isometrically ∗-isomorphic to C(Sp(B)) by the Gelfand-
Naimark theorem. Now one shows the image of A under the Gelfand transform, Â, separates
the points of Sp(B). So by Stone-Weierstrass we conclude Â = B̂. The Gelfand-Naimark
theorem in the other direction then gives us that A = B, and in particular x−1 ∈ A. For the
general case, we do a similar thing, observing that for the self-adjoint element x∗x a certain
element appears in the C∗-algebra generated by 1A, x

∗x which will also appear in the algebra
generated by 1A, x, x

∗ and will multiply with x∗ to yield x−1.

Suppose first that x = x∗. Let A be the unital C∗-algebra generated by x, and B the
unital C∗-algebra generated by x, x−1. So A ⊂ B ⊂ A. Since x and x−1 commute, B is

commutative. Thus by Theorem  2.7 , the Gelfand transform (̂−) : B → B̂ := C(Sp(B)) is an
isometric ∗-isomorphism. Since A is a C∗-subalgebra of B, it follows () that Â (the image of ref
A under the Gelfand transform) is a C∗-subalgebra of B̂.

We claim Â separates points of Sp(B). Let `1, `2 ∈ Sp(B), and suppose `1(x) = `2(x). Then
for any ` ∈ Sp(B),

`(xx−1) = `(x)`(x−1) = `(1A) = 1A

and
`1(x

−1) = `(x)−1 = `2(x)−1 = `2(x
−1).

Since B is generated by x, x−1 it follows that `1 = `2. We have shown that if `1 6= `2, then
`1(x) 6= `2(x), i.e. x̂(`1) 6= x̂(`2). So Â separates points of Sp(B). So Â ⊂ B̂ is dense, and
since it is also closed, they are equal. Theorem  2.7 again now imiplies A = B. In particular,
x−1 ∈ A.

For the general case, consider an invertible element x ∈ A. Then x∗x is invertible with
inverse x−1(x−1)∗. But x∗x is self-adjoint, hence by the above x−1(x−1)∗ is in the C∗-algebra
generated by 1A and x∗x, which itself is in the C∗-algebra generated by 1A, x, x

∗. But then

x−1(x−1)∗x∗ = (x∗x)−1x∗ = x−1

is also in that algebra, and we are done.

Corollary 2.9 (spectral permanence). Let A ⊂ B be unital C∗-algebras with the same unit,
and let x ∈ A. Then σA(x) = σB(x).
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Proof. A ⊂ B already implies σB(x) ⊂ σA(x). For the other inclusion, suppose (x − λ1A)
is invertible in B. Then by Theorem  2.8 , (x − λ1A)−1 is in the C∗-algebra generated by
x−λ1A, i.e. x−λ1A is invertible in A. Thus C \ σB(x) ⊂ C \ σA(x). So σB(x) ⊃ σA(x).

Corollary 2.10. Let A be a unital C∗-algebra, and x ∈ A normal . Then ‖x̂‖∞ = ρ(x). need
self-
adjoint?Proof. Since x is normal, A(x) is commutative (Corollary  2.5 ). Thus im(x̂) = σA(x)(x) by

Theorem  1.37 . By Corollary  2.9 , σA(x)(x) = σA(x). Now by definition,

‖x̂‖∞ = sup{|x̂(`)| = |`(x)| : ` ∈ Sp(A), ‖`‖ ≤ 1}.

But by Proposition  1.30 , it is always true that ‖`‖ ≤ 1. Hence

‖x̂‖∞ = sup{|x̂(`)| = |`(x)| : ` ∈ Sp(A)} = sup{|λ| : λ ∈ im(x̂) = σA(x)} = ρ(x).

Theorem 2.11. Let A be a unital C∗-algebra generated by a single normal element h ∈ A.
Then there is an isometric ∗-isomorphism between A and the algebra C(σA(h)), mapping
polynomials in h to the same polynomials in C(σA(h)).

Proof. By Corollary  2.5 , A = A(x) is commutative. Hence by Theorem  2.7 it is isometrically
∗-isomorphic to the C∗-algebra C(Sp(A)). By Theorem  1.37 , ĥ : Sp(A) → σA(h) is a
homeomorphism. Now define

α : C(Sp(A)) −→ C(σA(h))

f 7→ f ◦ ĥ−1

Sp(A)

C

f

α7→
σA(h) C

Sp(A)
ĥ−1

α(f)

f

In particular, α(ĥ)(λ) := f ◦ ĥ−1(λ), which shows α is an isometric ∗-isomorphism. Hence work

refα ◦ (̂−) : A −→ C(σA(h))

is an isometric ∗-isomorphism.

Let’s show that this map is how we describe in the statment of the theorem. Let p be a
complex polynomial. Then

(α ◦ p̂(h))(λ) =(α ◦ p(ĥ))(λ)

=(p ◦ α(ĥ))(λ)

=p(λ),

where we have used the linearity of α.
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Theorem 2.12. Let Ω be a compact Hausdorff space. Then we have the following homeo-
morphism: Sp(C(Ω)) ∼= Ω.

Proof. The idea is the following. The map exhibiting the homeomorphism will be the func-
tion sending ω ∈ Ω the the evaluation map φω which sends a ∈ C(Ω) to a(ω). This map is
injective because C(Ω) separates points of Ω. To show it is surjective, we suppose for the
sake of contradiction that for ` ∈ Sp(A) there does not exist ω ∈ Ω such that ` = φω. Then
for each ω we can construct bω ∈ C(Ω) which does not vanish at ω, hence does not vanish
in a neighborhood of ω, but `(bw) = 0. By compactness we can cover Ω with finitely many
such neighborhoods, and define a continuous function x to be the sum of the finitely many
corresponding bω. We can make this function positive everywhere on Ω. We then derive a
0 = 1 contradiction using the fact that `(x) = 0 but `(xx−1) = `(1A) = 1.

For each ω ∈ Ω, define the evaluation maps

φω : C(Ω) −→ C
a 7→ a(ω)

One checks φω is a character, so φω ∈ Sp(C(Ω)). Note if φω1 = φω2 then a(ω1) = a(ω2) for work
all a ∈ C(Ω). By , C(Ω) separates points of Ω, so a(ω1) = a(ω2) for all a ∈ C(Ω) implies

refω1 = ω2. Thus ω 7→ φω is injective.

To show it is surjective, let ` ∈ Sp(C(sp(A))) and suppose for the sake of contradiction
that does not exist ω ∈ Ω such that ` = φω. Then ` − φω 6= 0 for all ω ∈ Ω. So far each
ω ∈ Ω, there exists aw ∈ C(Ω) such that `(aω) − φ(aω) 6= 0, i.e. `(aω) 6= aω(ω). Write
bω :− aω − `(aω)1A. Then bω 6= 0 (since bω(ω) 6= 0) but `(bω) = 0.

Since bω ∈ C(Ω), there exists a neighborhood Nω of ω such that bω does not vanish on Nω.
Varying ω over Ω we get an open cover {Nω : ω ∈ Ω} of Ω. Since Ω is compact, we get a
finite subcover {Nω1}. Write

x = |bω1|2 + · · ·+ |bωk |2.

Then x ∈ C(Ω) and x(ω) > 0 for all ω ∈ Ω. Also

`(x) =`(b∗ω1
) + · · ·+ `(b∗ωkbωk)

=`(b∗ω1
)`(bω1) + · · ·+ `(b∗ωk)`(bωk)

=0,

since `(bωj) = 0 for all j = 1, . . . , k. So x ∈ ker(`). But x > 0 implies x−1 exists in C(Ω) , ref
and we reach a contradiction:

0 = `(x)`(x−1) = `(xx−1) = `(1A) = 1.

This shows surjectivity.

To show this is a homeomorphism, since Ω is compact by assumption and Sp(A) is compact
by Proposition  1.35 , it sufficies to show φ(−) is continuous . Suppose a net (wα) ⊂ Ω converges ref
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to ω. Then for each x ∈ C(Ω),

φωα(x) = x(ωα)→ x(ω) = φω(x)

by the continuity of x. This φωα → φω and we’re done.

Theorem 2.13 (unitization). Let A be a C∗-algebra without unit. Then A is isometrically
∗-isomorphic to a C∗-algebra of codimension 1 in a unital C∗-algebra.

Proof. We define the unital C∗-algebra as follows:

as a set Ã = A⊕ C
involution a⊕ λ 7→ a∗ ⊕ λ
multiplication (a⊕ λ)(b⊕ µ) = (ab+ λb+ µa)⊕ λµ
norm ‖a⊕ λ‖ = sup{‖ax+ λx‖ : x ∈ A, ‖x‖ ≤ 1}
unit 0⊕ 1

We check this works. check

Theorem 2.14. The norm on a C∗-algebra is unique.

Proof. Suppose n1 and n2 are norms on A making A a C∗-algebra. Without loss of generality
we may assume A is unital, by Theorem  2.13 . Let h ∈ A be self-adjoint. Then ref

n1(h) = ‖ĥ‖∞ = sup{|λ| : λ ∈ σ(h)} = n2(h),

since inverses are defined algebraically (i.e. independent of norm).

In general, for any x ∈ A,

n1(x)2 = n1(x
∗x) = n2(x

∗x) = n2(x)2

since x∗x is self-adjoint.

Corollary 2.15. Let A be a non-unital C∗-algebra. Then unitization commutes with taking
the subalgebra generated by a:

A A(x)

Ã Ã(x) = Ã(x)

Theorem 2.16. Let A be a commutative C∗-algebra without unit. Then there exists a
locally compact, non-compact, Hausdorff space X such that A is isometrically ∗-isomorphic
to C0(X), the C∗-algebra of continuous C-valued functions on X vanishing at infinity.
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Proof. Let K = Sp(Ã). By Proposition  1.35 , K is a compact Hausdorff space. By Theorem
 2.7 , Ã ' C(K), and so A is isometrically ∗-isomorphic to a C∗-subalgebra of C(K) via the
Gelfand transform on Ã.

Let κ0 ∈ K be defined as follows:

κ0(a) =

{
0 a ∈ A ⊂ Ã

1 a = 1A
.

So for any a ∈ A, we have â(κ0) = 0, so the image of A under (̂−) consists of functions in check
is charC(K) which vanish at κ0 ∈ K.

Conversely, suppose f ∈ C(K) is such that f(κ0) = 0. Let x ∈ Ã be such that x̂ = f . By
the construction of unitization, we can write x = a+ µ1A for some a ∈ A and µ ∈ C. Then

f(κ0) = 0⇒ x̂(κ0) = 0

⇒ κ0(x) = 0

⇒ κ0(a) + µκ0(1A) = 0

⇒ µ = 0,

since κ0(a) = 0 for all a ∈ A. Thus x ∈ A, so the Gelfand transform maps A onto the
subalgebra of C(K) consisting of those functions which vanish at κ0.

Let X = K \ {kκ0}. Then X is locally compact and the map g 7→ g|X is an isometric ref
∗-isomorphism

A = {g ∈ C(K) : g(κ0) = 0} −→ C0(X)

It remains to show X is not compact. If it were, κ0 would be an isolated point of K and the ref
element e ∈ A ⊂ Ã corresponding to the continuous function

ê(κ) =

{
0 κ = κ0

1 otherwise

would be a unit for A, a contradiction.

3 Gelfand-Naimark theorems

The following is stated as Theorem A.2. in [ 1 ]:

Theorem 3.1.

1. Let A be a unital Banach algebra over C. If a ∈ A, then σ(a) is nonempty.

2. Let A be a unital algebra over C of countable dimension. If a ∈ A, then σ(a) is
nonempty. Furthermore, a is nilpotent if and only if σ(a) = {0}.

22



Proof of 1. Suppose σ(a) = ∅. Then the function

R : C→ A

λ 7→ (a− λ1)−1

is holomorphic, non-constant, and bounded. But this contradicts Liouville’s theorem for
Banach space valued functions.

Proof of 2. Suppose σ(a) = ∅. Then (T − λ1)−1 exists for all λ ∈ C.

Claim 3.2. There is an injective, linear homomorphism φ : C(X)→ A sending X 7→ T .

Proof. Any element in C(X) may be expressed as p(X)
q(X)

, where p(X), q(X) ∈ C[X]. It is clear

that p(X) 7→ p(T ) is injective and linear, and it remains to show we can compatibly map
1

q(X)
. By the fundamental theorem of algebra we can write q(X) = (X − λ1) · · · (X − λn).

By assumption, (T − λ1)−1 exists, so map 1
q(X)

to (T − λ11)−1 · · · (T − λn1)−1.

By the uniqueness of partial fraction decomposition, the set{
1

X − λ

}
λ∈C

are linearly independent. Since φ is injective and linear, so are their images under φ, i.e. the
{(T − λ1)−1} are linearly independent. But then this would provide an uncountable basis
for A, contradicting our assumption.
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