
Bilateral Filtering via Compute Shaders

Varun Malladi
Dartmouth College

Bachelor
varunmalladi.github.io

Abstract

The bilateral grid is a data structure intended to ac-
celerate operations such as bilateral filtering. The major
benefit of the approach is its parallelizability. Previous im-
plementations leveraged this by implementing grid creation
and operations on the traditional rasterization pipeline, via
vertex and fragment shaders. However, this is wasteful by
the nature of the rasterization pipeline being optimized for
real-time rendering. Most modern GPUs now support com-
pute shaders, which allow general-purpose code to be par-
allelized on the GPU. We utilize this to implement bilat-
eral grid construction and various operations via compute
shaders.

1. Introduction
Gaussian filtering is very effective at reducing noise

globally. However, it does not recognize edges, so apply-
ing Gaussian blur to an image globally will result in a loss
of detail at the edges. This is typically not desired. Bilateral
filtering addresses this by modifying the Gaussian kernel
locally to account for edges. However, doing so greatly in-
creases the computational complexity of the blurring proce-
dure, as the filtering kernel is now dependent on the values
of the pixels it is being applied to, rather than being globally
constant.

As Chen et al. [1] demonstrated, one can approach this
problem by reconsidering the data structure we are convolv-
ing against. The issue with the bilateral filtering approach
described above was the the introduction of edge-awareness
changed the kernel locally. The idea of the bilateral grid
is to represent the image as a 3 dimensional object, whose
depth-hyperplanes correspond pixel intensity. In this object,
pixels spanning an edge will theoretically be located on dis-
tant hyperplanes. As a result, convolving this structure with
an ordinary 3D Gaussian kernel automatically accounts for
edge-awareness.

While it may seem that we have merely relegated the
computational complexity to the pre-processing stage, the

advantage of this approach is its amenability to GPU imple-
mentation. Grid construction and image reconstruction is
highly parallelizable, and as a result we can apply bilateral
filtering in real-time.

2. The bilateral grid
In what follows, let I be the intensity of our input im-

age. We assume that all intensity values are normalized
to fall within [0, 1]. We will write I(x, y) to refer to the
value of the pixel at (x, y) in Cartesian coordinates. The
process takes two parameters, ss and st. The parameter ss
corresponds to spatial sampling, and is ≥ 1. The param-
eter st corresponds to range sampling, and directly effects
the depth (or the number of layers) in our grid. Typically
st < 1.

2.1. Grid creation

Let Γ be the bilateral grid. The dimensions of Γ are([
I.w − 1

ss

]
,

[
I.h− 1

st

]
,

[
1

st

])
, (1)

where I.w, I.h are the pixel width and height of the image,
respectively, and [−] denotes the nearest integer operation.

First we initialize every voxel in the grid to have value 0.
Then, for each x, y in the input image, we do

Γ([x/ss], [y/ss], [I(x, y)/st]) += (I(x, y), 1). (2)

Depending on what we may store, we may alteral the first
component of the value the grid voxel is being incremented
by. For example, we may store the RGB value of the image
at (x, y) rather than the intensity.

2.2. Bilateral filtering

To do bilateral filtering we do bilateral filtering on our
grid. Assuming grid creation as above, this corresponds to
convolving the grid with a 3D Gaussian kernel. The kernel
takes two components: a spatial and range Gaussian. We
suggest taking the spatial σs to be ss, and the range σt to

1



be st. Then produce two 1D Gaussian kernels ks, kt corre-
sponding to σs, σt respectively. The convolution can then
be implemented as first applying ks along the x-dimension,
then applying ks along the y-dimension, and finally apply-
ing kt along the depth dimension. We are able to do this
because the Gaussian kernel is separable.

2.3. Slicing

Let O denote the output image, and O(x, y) the (x, y)
pixel value. The pixel value should correspond to the one
being stored in the bilateral grid (e.g. image intensity,
RGB). Then we compute the output image such that

O(x, y) = Γ(x/ss, y/ss, I(x, y)/st). (3)

Note that we do not round the coordinates of the grid here;
instead, we utilize trilinear interpolation on the grid to ob-
tain the value at the specified location.

3. Implementation
Our implementation targets macOS platforms with sup-

port for the Metal API. We used a 14-inch, 2021 Mac-
Book Pro with 16 GB of memory and an Apple M1 Pro
processor. You can find our implementation at https:
//github.com/treemcgee42/bilateral-grid.

3.1. Data representation

The bilateral grid is represented as an array of 2D tex-
tures. The length of the array corresponds to the number of
possible depth levels. We explored the possibility of repre-
senting the grid in a unified 3D texture, but would caution
other implementations to note the assumptions the graph-
ics API makes on such textures. At the time of writing, the
Metal API regards depth in the 3D texture as mipmap lev-
els. Hence sampling the 3D texture does not result in the
desired trilinear interpolation.

3.2. Grid creation

To zero-initialize the grid, we wrote a compute kernel to
write a zero-vector to each texel in the grid. The virtual grid
of GPU threads corresponded to the dimensions of the grid.

This was immediately followed by another compute ker-
nel responsible for writing to the grid. The grid of GPU
threads corresponded to the dimensions of the reference im-
age (texture). Each thread performs a read to the reference
image, a read to the grid texture, and a write to the grid
texture.

It is very important to consider synchronization issues
with this scheme. Namely, if ss > 1 then it may be possible
for two threads to be accessing a particular texel in the grid
simultaneously. The Metal API does not support atomic
read and write for textures, so alternative synchronization
methods needed to be used. Even if it did, this would not be

ideal as the entire texture would have to be have to be passed
between threads synchronously. But there only a portion of
pixels in the input image could possibly affect a given voxel
in the grid.

Our approach was to construct the grid in two passes. In
the first pass, we construct the grid with no downsampling
in the xy-dimensions. This ensures that each voxel in the
grid can be incremented by at most one pixel. In the second
pass, we downsample the grid to our desired dimensions.
It may be possible to implement this logic in a single pass,
though by utilizing two passes we can effectively bypass
branching in our shader code.

3.3. Bilateral filtering

As discussed in [1], bilateral filtering on the bilateral grid
corresponds to Gaussian filering on the grid with a 3D ker-
nel. To implement this we first construct another bilateral
grid texture, mocking the properties of the original grid.
We then pass both the original and new grid, along with
precomputed Gaussian kernels, to a compute shader which
implements the convolution. Since the kernel is separable,
we can 3D filtering one dimension at a time. In particular,
we first convolve the grid horizontally against ks, storing
the result in the new grid. We then convolve the new grid
with ks vertically, storing the result back into the new grid.
Finally, we convolve the new grid with kt depth-wise, stor-
ing the results back into the new grid.

Unlike grid creation, there should not be any concerns
with synchronization as only one thread will be reading
from and writing to a given texel in the grids.

3.4. Slicing

To perform trilinear interpolation on our bilateral grid,
which is represented as an array of 2D textures, we first
compute the coordinates (x, y, z) at which we wish to ob-
tain the interpolated value. We then fetch the two near-
est 2D textures corresponding to the coordinate, e.g. the
ones whose indices correspond to the floor and ceiling of
z. Since each of these are ordinary 2D textures, we can take
advantage of hardware/API-supported bilinear interpolation
by sampling these textures at (x, y). Finally, we perform 1D
interpolation on the two resulting values to obtain our final
trilinearly-interpolated result.

We did this with another compute kernel, with thread
grid shape corresponding to the shape of the input (and de-
sired output) dimensions.

4. Results

A major strength of the bilateral grid is its applicability
to a wide range of applications. While we only cover two
here, we refer the reader to [1] for further exploration.

2

https://github.com/treemcgee42/bilateral-grid
https://github.com/treemcgee42/bilateral-grid


4.1. Bilateral filtering

Given a test image

our results were as follows:

We used a kernel diameter of 5 in all dimensions. Com-
pared to the corresponding call using the OpenCV library
in Python, our method was approximetely twice as fast, at
around 4 milliseconds. This number includes the creation
of the grid, but does not include the conversion of the input
image to a texture, or the conversion of the output texture
to an image. Another factor to consider is that the OpenCV
library likely does not support GPU-acceleration on our sys-
tem, though it might support it on other hardware.

4.2. Cross-bilateral filtering

Cross-bilateral filtering is a simple extension of bilateral
filtering, where the spatial and range Gaussians are applied
to different images to generate a sort of combined image.
Implementation-wise, this amounts to indexing the grid dur-
ing creation with (intensity) values coming from the spatial
image, but storing values coming from the range image in
the grid. Slicing is also done by indexing into the grid using
the spatial image. In this work, we applied the spatial Gaus-
sian to a flash image, and the range Gaussian to a non-flash
image of the same scene. Our results are as follows:

5. Conclusion

5.1. Limitations

The largest drawback of the bilateral-grid is its (texture)
memory consumption. Not only does the grid occupy a con-
sideral amount of memory, the operations on the grid may
also require additional memory. For instance, the grid cre-
ation process utilized an intermediate grid texture and the
downsampled it into a separate texture. The result of Gaus-
sian filtering was a separate grid texture.

A consequence of the heavy memory requirements is that
the bilateral grid will likely (as in our implementation) in-
dex depth with a single value. In the above, we described
indexing depth using pixel intensity. As a result, techniques
such as bilateral filtering on the grid are edge-aware with
respect to pixel intensity, though in practice we may desire
the algorithm to account for edges not apparant in the pixel-
intensity domain.

5.2. Future research

To the extent of reducing memory usage, we are inter-
ested in exploring single-pass techniques for grid creation.
We noted that while it would be possible to implement the
logic we described above into a single pass, doing so would
require branching code. We suspect, though haven’t con-
firmed, that this would signficantly affect performance. An-
other solution we considered was leveraging atomic opera-
tions. For one, the Metal API does not support atomic op-
erations on 2D textures. The larger issue, though, is that
doing so may mean acquiring a lock for the entire thread.
But given a voxel in the grid, there are only a relatively
small amount of pixels in the input image which could af-
fect the value of that voxel. Thus many threads would be
unnecessarily waiting to acquire the lock.

We would also like to apply this method to videos.
Since computation is dominated by grid creation, we are
interested in finding ways to leverage similarities between
frames to avoid reconstructing the entire grid every frame.
Indeed, the strength of the bilateral grid comes from the
flexibility of the grid structure.

Finally, we are interested in utilizing hardware support
for 3D textures and trilinear interpolations. As discussed,
this data structure is intended to be used for mipmaps. It
would be interesting to consider whether the bilateral grid

3



could be represented (or approximated) in such a way. This
may also reduce texture memory usage.

References
[1] Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time

edge-aware image processing with the bilateral grid. ACM
SIGGRAPH 2007 papers, 2007. 1, 2

[2] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the
display of high-dynamic-range images. Proceedings of the
29th annual conference on Computer graphics and interactive
techniques, 2002.

[3] James Tompkin. Bilateral filter lab.

4


