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1 rings and ideals

1.1 operations on ideals

Let a, b ⊂ A be ideals.

1.1.1 sum

The sum of two ideals is an ideal, and is the set

a + b = {a+ b}.

The sum of finitely many ideals is the set

n∑
i=1

ai = {
n∑
i=1

ai}.

The sum of infinitely many ideals is the set of all sums finite sums.

Note that the sum is the smallest ideal containing each of its summands.

1.1.2 intersection

The setwise intersection of arbitrary many ideals is naturally an ideal:⋂
i∈I

ai

Proposition 1.1. If b ⊂ a or c ⊂ a, then

a ∩ (b + c) = a ∩ b + a ∩ c.
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1.1.3 product

The product of two ideals is an ideal, which is

ab = {xy}.

The product of finitely many ideals is likewise

n∏
i=1

ai = {
n∏
i=1

ai}.

Proposition 1.2. a(b + c) = ab + ac.

1.1.4 quotient

The quotient of two ideals I ⊂ J ⊂ A is the abelian group formed by taking the quotient of
abelian groups J/I. This is in general not an ideal of A. However, it is an A/I-module and,
in fact, an ideal in the ring A/I:

Proposition 1.3. The abelian group J/I is A-module isomorphic to the extension (Defini-
tion  1.36 ) of J in A/I, under the natural quotient map A→ A/I.

Proof. Given ideals I ⊂ J ⊂ A, the extension of J to the ring A/I consists of finite sums of
the form

n∑
k=1

(jk + I)(ak + I) = (
n∑
k=1

jkak) + I = j + I,

where j ranges over all of J . This is nothing but the quotient J/I as abelian groups.

We have to be a bit careful though when there is no assumption on inclusions of I and J
with respect to each other, since then the quotient of abelian groups doesn’t make sense.

Corollary 1.4. I(A/J) = (I + J)/J .

Proof. (I+J)/J is the extension of the ideal I+J to the ring A/J under the natural quotient.
But in this quotient, elements of J are killed, so this it is equivalently the extension of I to
A/J .

1.2 prime ideals

Proposition 1.5 (Krull). Let S ⊂ A be a multiplicatively closed not containing 0. Consider
the set

Σ = {a ⊂ A : a ∩ S = ∅}

of ideals avoiding S. Then any maximal element  

1
 of Σ is prime.

1i.e. an ideal avoiding S which is not strictly contained in any other ideal avoiding S
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Proof. Let y ∈ Σ be a maximal element. It suffices to show that for a, b ∈ A, if ab ∈ y then
a ∈ y or b ∈ y. Suppose neither is in y. Then the ideals y + (a) and y + (b) strictly contain
y, so there must exist s ∈ (y+ (a))∩ S, and s′ ∈ (y+ (b))∩ S. We can write s = y + ca and
s′ = y′ + c′a for y, y′ ∈ y and c, c′ ∈ A. Then

ss′ = pp′ + cap′ + pc′b+ cc′ab,

which is in y since pp′ + cap′ + pc′b ∈ y and ab ∈ y. But this contradicts the fact that S is
multiplicatively closed.

Example 1.6. Take S = A×. Ideals avoiding S are all proper ideals, hence the above
proposition is just saying that maximal ideals are prime.

Definition 1.7. Consider a multiplicatively closed set S ⊂ A, and let s ∈ S and a ∈ A. We
say that S is saturated if as ∈ S implies x ∈ S.

Proposition 1.8. Let p be prime, and consider the (multiplicatively closed) set S = A− p.
Then S is saturated.

Proof. prove

The following tells us the this is almost the dual notion of “prime”, but not exactly:

Proposition 1.9. The following are equivalent:

1. S is saturated.

2. A− S is a union of prime ideals.

Proof. (2⇒ 1) Suppose A− S =
⋃
α pα, where each pα is prime. Then

S = A−
⋃
α

pα =
⋂
α

(A− pα).

First we will show S is multiplicatively closed. Let s, s′ ∈ S. Then s, s′ 6∈ pα for all α. Since
pα is prime, we know ss′ 6∈ pα for all α. But this means that ss′ ∈ S. Now to see that it
is saturated, suppose to the contrary that xs ∈ S with x 6∈ S and s ∈ S. Then x ∈ pβ for
some β. But then xs ∈ pβ, contradicting that xs ∈ S.

(1⇒ 2) Suppose S is saturated. Let x ∈ A− S. Then (x)∩ S = ∅, i.e. (x) avoids S. Define

Σx = {a ⊂ A : (x) ⊂ a, a ∩ S = ∅}

to be the set of ideals avoiding S and containing (x). Let px be a maximal element of Σx. By
(a modified version of) Proposition  1.5 , we have that px is prime. In particular it contains
x, and so

A− S =
⋃

x∈A−S

{x} ⊂
⋃

x∈A−S

px ⊂ A− S

and the result follows.
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Corollary 1.10. A− A× is the union of all maximal ideals.

Proof. Let S = A×. One checks this is saturated, and then applies Proposition  1.9 .

Corollary 1.11. The set of zero divisors is a union of prime ideals.

Proof. Take S to be the set of elements which are not zero divisors. One checks this is
saturated, and then applies Proposition  1.9 .

Theorem 1.12 (prime avoidance). Let p1, . . . , pn be prime ideals in A, and let a ⊂ A be
any ideal contained in their union. Then a ⊂ pi for some i.

Proof. We essentially need to contradict the fact that all of the pi are needed. We proceed
by induction:

If n = 1, then the statement is trivial. For n = 2, suppose to the contrary that a is not
in p1 or p2. Then there exists x2 ∈ a − p1 and x1 ∈ a − p2. Note then that x1 ∈ p1 and
x2 ∈ p2. Consider the element x1 + x2 ∈ a. Then x 6∈ p1, for otherwise x2 = x − x1 would
be. Likewise x 6∈ p2. This is a contradiction.

Now for n > 2. By the induction step, if

a ⊂
⋃
i 6=j

pi

then we are done (the union is taken over all 1 ≤ i ≤ n with the exception of some 1 ≤ j ≤ n).
So we may assume a is not in the above union for any j. Then for all j there exists xj ∈ a
such that xj ∈ pj and xj 6∈ xi for all i 6= j. Let x =

∑
j xj ∈ a.

We claim x 6∈ pj for any j. Suppose otherwise. Then
∑

i 6=j xj = x− x1 ∈ pj ∈ pj. But this
is impossible, since by construction none of the xi for i 6= j are in pj.

But this shows that x ∈ a−
⋃
i pi, which is an empty set. This is a contradiction.

Definition 1.13. Let a ⊂ A be proper. A minimal prime of (or above) a is a prime ideal
minimal in the set V (A) of prime ideals containing a.

Proposition 1.14. Minimals primes exist.

Proof. Zorn’s lemma backwards, comp hw prove

1.3 local rings

Definition 1.15. A is local if it has a unique maximal ideal.

Example 1.16.

1. The ring C{z} of convergent power series at the origin. The unique maximal ideal is
(z).
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2. The ring Z/pkZ, where p is prime. Since every ideal of Z is principal (), and the ideals ref
in this ring correspond to ideals in Z containing (pk) by , the ideals in this ring have ref
the form (a) where a | pk. But this means a = pl for some l ≤ k. In particular, all
such (a) are contained in (p), hence the corresponding (now unique) maximal ideal in
Z/pkZ is the ideal corresponding to (p).

3. Z(p) = {a
b
∈ Z : p - b}. Here every element is invertible except those with numerator

dividing p. All such numbers are in the ideal (p).

Proposition 1.17. A is local if and only if A− A× is an ideal.

Proof. Say A is local, with maximal ideal m. Then A − A× is the union of maximal ideal
(Proposition ), hence A − A× = m which is an ideal. Conversely, if A − A× is an ideal, let ref
m ⊂ A be maximal. But m ⊂ A− A×, so m = A− A×.

1.4 nilpotents

Definition 1.18. An element a ∈ A is called nilpotent if ak = 0 for some k. We write the
set of all nilpotent elements as Nil(A).

Proposition 1.19. Nil(A) is an ideal.

Proof. If x ∈ Nil(A), then ax ∈ Nil(A) for all a ∈ A, since (ax)k = akxk = 0. It remains to
show Nil(A) is additively closed. Let x, y ∈ Nil(A) such that xN = 0 = yN . Then

(x+ y)N+M =
∑

0≤k<N

(
N +M

k

)
xkyN+M−k +

∑
N≤k≤N+M

(
N +M

k

)
xkyN+M−k.

Notice that in the first summand, N + M − k ≥ M , hence yN+M−k = 0 there and the
summand vanishes. Likewise, in the second summand k ≥ N and so xk = 0 there and the
summand vanishes. So in total (x+ y)N+M = 0 as desired.

Proposition 1.20. A/Nil(A) is reduced, i.e. it has no nonzero nilpotents.

Proof. If 0 = aN = aN , then an ∈ Nil(A) so there exists some m > 0 such that anm = 0.
But then a is nilpotent, so a = 0.

Proposition 1.21. Nil(A) =
⋂
{prime ideals}.

Proof 1. For the forward inclusion, let x ∈ Nil(A). Then xN = 0 for some N . But 0 is an
element of every prime ideal. Hence xN is in every prime ideal, hence x is.

For the reverse direction, consider the inclusions

A −→ A[x] −→ A[[x]].

By Proposition  1.40 , if we have prime ideal q ⊂ A[X], then its pullback in A, which is A∩ q,
is prime in A. Now suppose a ∈

⋂
Spec(A). Then in particular a is in all prime ideals of the
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form A ∩ q, so a ∈ q for any prime ideal q ⊂ A[X]. So then 1 − aX is in no prime ideal of
A[X], for otherwise 1− aX + aX = 1 would be. Since maximal ideals are prime, 1− ax is in
no maximal ideal, hence 1−ax is invertible in A[X]. We know what (1−ax)−1 is mapped to
in A[[X]], since the inverse there is the formal power series 1+aX+a2X2+· · · . Since inverses
are unique, and homomorphisms (which in our case is an inclusion) map inverses to inverses,
it must be that this formal power series is in A[X]. But that is only possible if aN = 0 for
some N , i.e. the power series terminates at some finite degree. Hence a ∈ Nil(A).

Proof 2. For the forward inclusion, do the same as the previous proof. For the reverse
inclusion, we will prove the contrapositive, i.e. that if x 6∈ Nil(A) then x 6∈

⋂
Spec(A). So

suppose x 6∈ Nil(A). Then the set S = {1, x, x2, . . . } doesn’t contain 0. Let Σ be the set of
ideals in A avoiding S. This set is nonempty since 0 ∈ Σ. Hence by Proposition  1.5 , there
is a prime ideal p avoiding S. In particular, x 6∈ p, so x 6∈

⋂
Spec(A).

Since Nil(A) is the intersection of all prime ideals, we are led to the following similar defini-
tion:

Definition 1.22. The Jacobson radical of A is the set

J(A) :=
⋂

Specm(A),

i.e. the intersection of all maximal ideals of A.

Corollary 1.23. Nil(A) ⊂ J(A).

Proof. Every maximal ideal is prime, so J(A) is an intersection of a possibly smaller collection
of prime ideals than Nil(A), hence contains Nil(A).

Proposition 1.24. x ∈ J(A) if and only if 1− ax ∈ A× for all a ∈ A.

Proof. For the forard direction, let x ∈ J(A). Then ax ∈ J(A) for all a ∈ A, which means
that ax is in every maximal ideal of A. But then 1−ax is in no maximal ideal, for otherwise
1− ax+ ax = 1 would be in that maximal ideal. This means that 1− ax is invertible.

Conversely, suppose 1 − ax ∈ A× for all a ∈ A. Suppose to the contrary that x 6∈ J(A).
Then there exists a maximal ideal m which doesn’t contain x. By maximality, this must
mean m + (x) = A, so 1 = m + ax for some m ∈ m, a ∈ A. But then 1 − ax = m ∈ m,
contradicting that 1− ax is invertible.

1.5 radicals

Nilpotent elements were ones whose powers were “eventually” 0. We can generalize this
notion as follows:

Definition 1.25. Let a ⊂ A be an ideal. The radical of a is the ideal

√
a := {x ∈ A : xn ∈ a for some n}.
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Corollary 1.26.
√
a is indeed an ideal.

Proof. Consider the natural projection π : A → A/a. Then xn ∈ a if and only if x̄n = 0̄,
where the bar denotes the image in the quotient. But this is true if and only if x̄ ∈ Nil(A/a),
which we know is an ideal (Proposition  1.19 ). Thus

√
a is the preimage of an ideal, hence

an ideal (Proposition  1.39 ).

Corollary 1.27. For a proper ideal a,

√
a =

⋂
{p ∈ V (a) : p is minimal over a}.

Example 1.28. Nil(A) =
√

0.

For an ideal a ⊂ A, we will write

V (a) := {p ∈ Spec(A) : p ⊃ a},

i.e. V (a) is the set of prime ideals containing a.

Proposition 1.29. For an ideal a ⊂ A,

√
a =

⋂
p∈V (a)

p.

Proof. By the proof above,
√
a = π−1(Nil(A/a)). By (Proposition  1.21 ),

π−1(Nil(A/a)) = π−1(
⋂

Spec(A/a)).

By Propositions  1.42 and  1.40 ,

π−1(
⋂

Spec(A/a)) =
⋂

p∈V (a)

p.

Proposition 1.30. Let a, b ⊂ A be ideals.

1. (closure-like)
√√

a =
√
a.

2.
√
ab =

√
a ∩ b =

√
a ∩
√
b.

3.
√
a = A if and only if a = A.

4.
√
a + b =

√√
a +
√
b.

5. if p is prime, then
√
pn = p.

Proof.
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1. If x ∈
√√

a, then xn = y for some y ∈
√
a and some n. But since y ∈

√
a there exists

m such that ym ∈ a. Then xnm ∈ a, so x ∈
√
a. Conversely, let x ∈

√
a. Certainly

x1 ∈
√
a, so x ∈

√√
a.

2. t

3. t

4. prove

Corollary 1.31. Let a, b be such that
√
a,
√
b are coprime. Then a and b are coprime.

Proof. prove

1.6 quotient ideals

Definition 1.32. Let a ⊂ A be an ideal, and E ⊂ a a subset. Define

(a : E) := {a ∈ A : aE ⊂ a}.

If E = {x}, we will use the shorthand (a : x).

Corollary 1.33. (a : E) ⊂ A is an ideal.

Proof. First consider the case E = {x}. Then (a : x) = Ann(x̄ ∈ A/a) as an A-module, and
since annihilators are ideal () it follows that (a : x) is an ideal. For the general case, just ref
observe

(a : E) =
⋂
x∈E

(a : x).

Example 1.34. The set of zero divisors on A is just⋃
x 6=0

(0 : x).

1.7 extension and contraction

In what follows, let f : A→ B be a ring homomorphism. Let a ⊂ A be an ideal.

Example 1.35. f(a) is not always an ideal in B. For instance, consider the inclusion
f : Z → Q and let a ⊂ Z be any nonzero ideal. Then for any q ∈ Q − Z, we have that
qa 6⊂ a.

As this example demonstrates, we need to “extend” the set f(a) if we want to obtain an
ideal in B generally.
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Definition 1.36. The extension of a, denoted ae or Bf(a), is the ideal in B generated by
f(a). Explicitly, it is the collection of finite sums

∑
i yif(xi), where xi ∈ a and yi ∈ B.

Example 1.37. The extension of an ideal I ⊂ A to A under the identity A → A is just I
itself, since its elements are of the form

n∑
k=1

ikak

which is just all of I.

By Proposition  1.3 , given ideals I ⊂ J ⊂ A, the extension of J to the ring A/I is equivalent
to the quotient of abelian groups J/I (as A/I-modules).

Given an A-module M , the extension of an ideal I ⊂ A to M , denoted IM , is the extension
under the natural injection A→M sending a 7→ a · 1. It elements are thus of the form

n∑
k=1

ikmk.

This is nothing but the abelian group generated by the product IM . We will often use the
notation IM to represent this abelian group.

On the other hand, for an ideal b ⊂ B, it is always true that f−1(a) is an ideal of A. In
other words, the ideal structure on b induces an ideal structure on f−1(a). This is essentially
because f : A → B is a homomorphism. Note however that f need not be surjective. In
particular, it may be that for a proper inclusion of ideals b1 ⊂ b2 we have f−1(b1) = f−1(b2).
So in some sense we are potentially losing some information about b by doing this operation
(unless f is surjective onto b).

Definition 1.38. The contraction of b, denoted bc, is the preimage f−1(b).

Proposition 1.39. bc ⊂ A is an ideal.

Proof. Let a1, a2 ∈ f−1(b). Then f(a1), f(a2) ∈ b so f(a1) + f(a2) = f(a1 + a2) ∈ b, so
a1 + a2 ∈ f−1(b). Now let a ∈ A and a′ ∈ f−1(b). Then f(aa′) = f(a)f(a′) ∈ b, so
aa′ ∈ b.

Proposition 1.40. If b is prime, then so is bc.

Proof. Let a1, a2 ∈ A and suppose a1a2 ∈ bc. Then f(a1a2) = f(a1)f(a2) ∈ b, so either
f(a1) or f(a2) is in b. Then either a1 or a2 is in bc = f−1(b).

Example 1.41. If a ⊂ A is prime, then ae ⊂ B need not be. Consider again the inclusion
f : Z→ Q, and let a be a nonzero ideal. Then ae = Q, which is not prime in Q.

Now consider the following factorization of f :

A
p−→ f(A)

j−→ B.
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We want to know what happens to ideals under these maps. It turns out that we know what
happens with p, but the case of j is in general very hard.

Proposition 1.42. Fix an ideal a ⊂ A. There is a one-to-one, order-preserving correspon-
dence {

ideals
a ⊂ b ⊂ A

}
←→

{
ideals

b ⊂ A/a

}
b
c ← b.

Proof. We first claim a ⊂ b
c
. Let a ∈ a. Then π(a) = 0 ∈ b, where π is the canonical

projection onto the quotient.

Now we show injectivity. Suppose b1 6= b2. Then there exists b ∈ b1 which is not in b2. Let
a ∈ π−1(b), which exists since π is surjective. Then also a ∈ b1

c
, but a 6∈ b2

c
.

Now we show surjectivity. Let a ⊂ b ⊂ A. It suffices to show π(b) is an ideal of A/a.
Indeed, for b1 ∈ π(b) and b2 ∈ A/a, there exists a1 ∈ b and a2 ∈ A such that π(a1) = b1 and
π(a2) = b2. Then a1a2 ∈ b, so π(a1a2) = π(a1)π(a2) = b1b2 ∈ π(b). It is also closed under
addition.

Returning to the factorization of f above, this proposition tells use exactly what happens to
the ideals under p, for we can regard f(A) ∼= A/ ker(f).

Proposition 1.43.

1. a ⊂ aec and b ⊃ bce.

2. ae = aece and bc = bcec.

Corollary 1.44. Extension and contraction form a (monotone?) Galois connection (). ref

Corollary 1.45. There is a bijection{
contracted
ideals in A

}
←→

{
extended

ideals in B

}
a→ ae

bc ← b.

1.8 products

We write out what a categorical product in the category of rings means explicitly:

Definition 1.46. The product of a family of rings {Aα}α is a ring P equipped with ring
maps

{πα : P → Aα}α
called projections which is universal, i.e. given any ring R and any family of ring maps
{fα : R→ Aα}α, there exists a unique ring map f̃ : R→ P such that for all α the following
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diagram commutes:

Aα P

R

πα

fα
f̃

Note that the ring P is unique up to unique isomorphism, and so we can say an explicit con-
struction of it is the usual product

∏
αAα with component-wise operations and projections.

A related question is whether we can determine a given ring is a product. Given a product
ring R = A1 × A2, consider the elements e1 = (1, 0) and e2 = (0, 1). These satisfy:

• (idempotent) e21 = e1 and e22 = e2

• (central) e1, e2 commute with all elements of R

• (orthogonal) e1e2 = 0

• (complete) e1 + e2 = 1

Proposition 1.47. Let R be a (possibly noncommutative) ring. Let {e1, e2} be a complete
set of orthogonal central idempotents. Then R ∼= A1 × A2, where Ai = Rei.

Proof. First we claim Re1 and Re2 are rings. We will work with Re1, and the other case is
analagous. First note that e1 ∈ Re1 acts as the unit. It contains the same 0 from R as well.
It is closed under addition since r1e1 + r2e1 = (r1 + r2)e1, and closed under multiplication
since r1e1 · r2e1 = r1r2e

2
1 = r1r2e1, where we have used the fact that e1 is central.

The map will be

R→ Re1 ×Re2
r 7→ (re1, re2).

To see it is injective, suppose (re1, re2) = (r′e1, r
′e2). Then re1 = r′e1 and re2 = r′e2. So

(r−r′)e1 = 0 and (r−r′)e2 = 0. Adding these together, (r−r′)(e1+e2) = 0. But e1+e2 = 1
by assumption, and so r = r′.

To see it is surjective, consider an arbitrary element (r1e1, r2e2). Then it is the image of
r1e1 + r2e2.

Remark 1.48. Unlike above, neither Ai is a subring of R.

Proposition 1.49. If a commutative ring A has a nontrivial idempotent element (an element
e other than 0 or 1 satisfying e2 = e), then A decomposes as a product A ∼= A1 ×A2 of two
nontrivial rings.

The idea is to think of the idempotent element as a sort of projection, and in a sense
decompose every element in A into its projected component and remainder.

Proof. We claim the map

φ : A −→ (e)× A/(e)
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a 7→ (ae, [a])

is a ring isomorphism, where [a] is the class of a in the quotient.

We first show that it is unital. Under this map, 1A 7→ (e, [1]). We claim this is a unit
for (e) × A/(e). Indeed, any element in the product can be expressed as (ae, [a′]) for some
a, a′ ∈ A. Then

(e, [1]) · (ae, [a′]) = (ae2, [a′]) = (ae, [a′]).

Now we will show it is a homomorphism:

φ(a1 + a2) = ((a1 + a2)e, [a1 + a2]) = (a1e+ a2e, [a1] + [a2]) = φ(a1) + φ(a2).

φ(a1a2) = (a1a2e, [a1a2]) = (a1a2e
2, [a1] · [a2]) = (a1e, [a1]) · (a2e, [a2]) = φ(a1)φ(a2).

To see that it is injective, suppose φ(a) = (0, 0). On the one hand, it must be ae = 0, so
a is a zero divisor of e. On the other hand, it must be that a ∈ (e), and so a = a′e for
some a′ ∈ A. But then ae = 0 = a′e2 = a′e, and so a′ is also a zero divisor for e. Hence
a = a′e = 0. This shows ker(φ) is trivial, and so φ is injective.

To see that it is surjective, consider an arbitrary element (ae, [a′]) ∈ (e)× A/(e). Then

φ(ae− a′ + a′e) = (ae− a′e+ a′e2, [ae− a′ + a′e]) = (ae, [a′])

as desired.

Theorem 1.50 (Chinese remainder theorem). Let I, J ⊂ A be coprime ideals 

2
 . Then

IJ = I ∩ J and
A/IJ ∼= A/I × A/J.

Proof. First we will show IJ = I ∩ J . Since elements of IJ are finite sums of the form∑
n cndn for cn ∈ I and dn ∈ J , we see that IJ ⊂ I ∩ J . For the other direction, let

x ∈ I ∩ J . Since I and J are coprime, there exist c ∈ I and d ∈ J such that c+ d = 1. Then
x = x(c+ d) = cx+ dx ∈ IJ .

Now we will demonstrate the isomorphism. Consider the map

A→ A/I × A/J
a 7→ (ā, ā)

sending a to its image in the respective quotients. Then the kernel of this map is the set of
a such that a = 0 in both A/I and A/J . By definition of the quotient this only happens
if a ∈ I and a ∈ J respectively, i.e. a ∈ I ∩ J = IJ . If we can show that the map is also
surjective, then we are done by the first isomorphism theorem. Since I and J are coprime, an
arbitrary element in A/I can be expressed as [d1] = d1 + c1 and an arbitrary element in A/J
can be expressed as [c2] = c2+d2 for some c1, c2 ∈ I and d1, d2 ∈ J . Then c2+d1 7→ ([d1], [c1])
as desired.

2i.e. I + J = A
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2 modules

The following theorem and its corollaries will be collectively referred to as “Nakayama’s
lemma” 

3
 . The base assumption for these will be that M is a finitely generated A-module,

and I ⊂ A is an ideal contained in J(A).

Theorem 2.1 (Nakayama’s lemma). Let I ⊂ A be an ideal contained in J(A). Let M be a
finitely generated A-module. If IM = M , then M = 0.

Proof. Suppose M 6= 0. Let {x1, . . . , xn} be a minimal generating set for M . Then xn ∈
M = IM , so

xn = a1x1 + · · ·+ anxn

for some ai ∈ I ⊂ J(A). Subtracting anxn, we get that

(1− an)xn = a1x2 + · · · an−1xn−1.

But since an ∈ J(A), by Proposition  1.24 we know 1− an ∈ A×, so

xn = (1− an)−1a1x1 + · · ·+ (1− an)−1an−1xn−1,

violating the minimality of the generators x1, . . . , xn.

Corollary 2.2. Let M be a finitely generated A-module, M ′ ⊂M a submodule, and I ⊂ A
an ideal contained in J(A). If M ′ + IM = M , then M ′ = M .

Proof. Note that I(M/M ′) = (IM)/M ′ = (IM +M ′)/M ′ = M/M ′, where the last equality
is our hypothesis. M/M ′ is finitely generated since M is, and so by Nakayama’s lemma
M/M ′ = 0, i.e. M = M ′.

Corollary 2.3. Let M be a finitely generated A-module, and let I ⊂ A be an ideal contained
in J(A). Then a subset

{x1, . . . xn} ⊂M

generates M if and only if its image in the quotient

{x̄1, . . . , x̄n} ⊂M/IM

generates M/IM .

Proof. The forward direction is always true (). ref

For the reverse direction, suppose {x̄1, . . . , x̄n} generates M/IM . Consider the submodule

M ′ = Ax1 + · · ·+ Axn ⊂M

3apparantly Nakayama himself wasn’t fond of this name!
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(choosing xi to be some representative in M of the class x̄i). It suffices to show that M ′ = M .
By hypothesis, the composite map

M ′ −→M −→M/IM

is surjective, where the first map is the natural inclusion and the second is the natural
projection. It’s image is (M ′ + IM)/IM , and since it is surjective we have that (M ′ +
IM)/IM = M/IM , i.e. M ′ + IM = M . Then Nakayama’s lemma (Corollary  2.2 ) says
M = M ′.

Remark 2.4. This result tells us that a (finite) generating set on a submodule pulls back to
a generating set on the whole module provided we know beforehand that the whole module
is finitely generated.

2.1 tensor product

Let M be a right R-module and N be a left R-module, over a not-necessarily-commutative
ring R. Let A be an abelian group.

The tensor product can be thought of as the “universal multiplication”, in the sense that
any map M ×N → A which behaves like multiplication uniquely factors through the tensor
product. In particular, the map M × N → M ⊗R N is itself multiplication map, and the
induced map is linear.

First let’s be precise about what a “multiplication map” should look like. One might propose
the following:

Definition 2.5. A map M ×N → A is called R-bilinear if it is
• (biadditive)

µ(m+m′, n) =µ(m,n) + µ(m′, n)

µ(m,n+ n′) =µ(m,n) + µ(m,n′)

• (R-balanced)
µ(mr, n) = µ(m, rn)

We will construct an abelian group M⊗RN , the tensor product, equipped with an R-bilinear
map M ×N →M ⊗RN , which is universal in the following sense: Given any abelian group
A and any R-bilinear map µ : M × N → A, there exists a unique abelian group map (i.e.
linear map) µ̃ : M ⊗R N → A such that the following diagram commutes:

M ×N M ⊗R N

A

⊗

µ
µ̃

14



2.1.1 construction

We will now construct the tensor product M ⊗R N . This is occassionally useful, but it’s
main utility is to show that the tensor product actually exists. As will become apparant,
M ⊗R N is a quotient of an unwieldy group under an unwieldy collection of relations.

Consider the free abelian group generated by M×N , denoted FZ(M×N). This is the direct
sum of copies of Z, one for each element in M ×N :

FZ(M ×N) =
⊕

α∈M×N

Z.

This abelian group is generated by elements of the form e(m,n), which is the tuple with 0’s
in all coordinates except the one corresponding the α = (m,n).

At the moment the natural map

M ×N → FZ(M ×N)(m,n) 7→ e(m,n)

is not R-bilinear. We can essentially force it to become R-bilinear by considering the sub-
group J generated by elements of the form

e(m+m′,n) − e(m,n) − e(m′,n)

e(m,n+n′) − e(m,n) − e(m,n′)

e(mr,n) − e(m,rn).

We call the quotient FZ(M × N)/J as the tensor product, and write it as M ⊗R N . The
induced map

⊗ : M ×N → FZ(M ×N)→ FZ(M ×N)/J = M ⊗R N
(m,n) 7→ e(m,n) 7→ [e(m,n)] = m⊗ n

is then R-bilinear.

Corollary 2.6. Elements of the form m ⊗ n generate M ⊗R N . Such elements are called
elementary tensors.

Corollary 2.7. m⊗ 0 = 0⊗ n = 0.

Let us check that (M ⊗R N,⊗) is universal. Let µ : M ×N → A be an R-bilinear map into
an abelian group. Consider the following diagram:

FZ(M ×N) M ⊗R N

M ×N A

π

µ µ̃i

µ

finish

It is not true in general that a element which is zero in a tensor product of modules descends
to 0 in a tensor product of their submodules. However, there will always exist some pair of
submodules to which the element descends to 0 in their tensor product. Explicitly:
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Example 2.8. Let A = Z, and consider the A-modules M = Z and N = Z/2Z, with their
respective submodules M ′ = 2Z and N ′ = N . Then the element 2⊗1 is zero in M⊗N , since
2 ⊗ 1 = 1 ⊗ 2 = 1 ⊗ 0 = 0. However it is not zero in M ′ ⊗ N ′. First of all, we can’t factor
out the two since 1 6∈ M ′. In fact, 2⊗ 1 generates M ′ ⊗N ′, since any elementary tensor in
it has the form (2k, x). If x = 1, then (2k, x) = k(2⊗ x). If x = 0, then (2k, x) = 2k(2⊗ x).

Corollary 2.9. If xi ∈ M , yi ∈ N are such that
∑
xi ⊗ yi = 0 in M ⊗N , then there exist

finitely generated submodules M0, N0 such that
∑
xi ⊗ yi = 0 in M0 ⊗N0.

Proof. based on construction of tensor product it

Lemma 2.10 (functoriality). Given a map f : M → M ′ between R-modules, there is an
induced map

f ⊗ 1N : M ⊗N →M ′ ⊗N
m⊗ n 7→ f(m)⊗ n.

In the other direction too:

1N ⊗ f : N ⊗M → N ⊗M ′

n⊗m 7→ n⊗ f(m).

(we need to be careful about left/right modules if R is not commutative.)

Proof. It suffices to show that the map

φ : M ×N →M ′ ×N
(m,n) 7→ f(m)⊗ n

is R-bilinear. To see it is biadditive:

φ(m+m′, n) = f(m+m′)⊗ n = (f(m) + f(m′))⊗ n = φ(m,n) + φ(m′, n),

φ(m,n+ n′) = f(m)⊗ (n+ n′) = f(m)⊗ n+ f(m)⊗ n′ = φ(m,n) + φ(m,n′).

To see it is balanced:

φ(mr, n) = f(m)r ⊗ n = f(m)⊗ rn = φ(m, rn).

Hence the induced map is well-defined.

The other direction is analagous.

2.1.2 useful identities

Proposition 2.11. Let R be a not-necessarily-commutative ring, let I ⊂ R be a two-sided
ideal, and let M be a left R-module. Then

R/I ⊗RM ∼= M/IM

r̄ ⊗m 7→ rm

16



Proof. Let us first check that the forward map R/I ⊗RM →M/IM is well-defined. Based
on the construction of the tensor product, it suffices to show that the map

µ : R/I ×M →M/IM(r̄, m) 7→ rm

is R-bilinear.

First we will check that this is well-defined and additive in r̄. So fix m, and consider the
map

fm : R→M/IMr 7→ rm.

If r ∈ I, then rm = 0 since then rm ∈ IM . So fm|I = 0, so we get a well-defined map on
the quotient f̄m : R/I →M/IM . No let us see that this map is additive. Indeed,

r1 + r2 7→ (r1 + r2)m = r1m+ r2m = r1m+ r2m,

since taking equivalence classes is a homomorphism.

Now we will check that this is well-defined and additive in m. For well-defined, fix r̄. Then
if rm1 6= rm2 in M/IM then rm1 6= rm2 ∈ M , and so m1 6= m2. For additivity, the same
argument as above works on m instead of r.

Thus the map is biadditive. It remains to show that it is R-balanced. Calling the map φ,
we calculate

φ(r̄r′ ⊗m) = φ(r̄r′ ⊗m) = rr′m = φ(r̄, r′m).

We thus have an induced map of abelian groups

f : R/I ⊗RM →M/IM

r̄ ⊗m 7→ rm

In order to show this is an isomorphism, we can construct an inverse map. Consider the map

g : M 7→ R/I ⊗RM
m 7→ 1̄⊗m.

To see this is well defined, suppose 1̄⊗m1 6= 1̄⊗m2. Then g(m1−m2) = 1̄⊗ (m1−m2) 6= 0.
Then m1 6= m2, for otherwise g(m1 − m2) = g(0) = 1̄ ⊗ 0 = 0. Additivity follows by the
bilinearity of the tensor product. Now note that if m ∈ IM , then we may write m = im′

adn then 1̄⊗m = i(1̄⊗m′) = 0⊗m′ = 0, hence g vanishes on IM . Thus we get an induced
map

ḡ : M/IM → R/I ⊗RMm̄ 7→ 1̄⊗m.

We check our constructed maps are inverses:

g(f(r̄ ⊗m)) = g(rm) = 1̄⊗ rm = r̄ ⊗m,
f(g(m̄)) = f(1̄⊗m) = 1 ·m = m̄.

17



Corollary 2.12.

M ⊗N ∼→ N ⊗M
m⊗ n 7→ n⊗m

Corollary 2.13.

R⊗R R
∼→ R

r1 ⊗ r2 7→ r1r2

Corollary 2.14. R/I ⊗R/J ∼= R
I+J

.

Proof. We know R/I ⊗ R/J ∼= (R/J)/(I(R/J)). By Corollary  1.4 , I(R/J) = (I + J)/J .
Hence

R/I ⊗R/J ∼=
R/J

I(R/J)
∼=

R/J

(I + J)/J
∼=

R

I + J
,

where the last isomorphism is the third(?) isomorphism theorem.

Proposition 2.15. Let M be a right R-module, let N be an (R, S)-bimodule 

4
 , and let P

be a left S-module. The there is a natural isomorphism

(M ⊗R N)⊗S P
∼→M ⊗R (N ⊗S P )

(m⊗ n)⊗ p 7→ m⊗ (n⊗ p).

Proof. We are done if we can find an S-bilinear map (M ⊗RN)×P →M ⊗R (N ⊗S P ) and
show it is an isomorphism. However we should always be weary of trying to define maps
directly out of a tensor product, since it is hard to show they are well-defined. Instead we
would like for such maps to be induced:

Fixing P , consider the map

µp : M ×N →M ⊗R (N ⊗S P )

(m,n) 7→ m⊗ (n⊗ p).

Let us check this is R-bilinear. Indeed,

µp(m+m′, n) = (m+m′)⊗ (n⊗ p) = m⊗ (n⊗ p) +m′ ⊗ (n⊗ p) = µp(m,n) + µp(m
′, n),

µp(m,n+ n′) = m⊗ ((n+ n′)⊗ p) = m⊗ (n⊗ p+ n′ ⊗ p) = µp(m,n) + µp(m,n
′)

so it is biadditive. To see it is balanced:

µp(mr, n) = mr ⊗ (n⊗ p) = m⊗ r(n⊗ p) = m⊗ (rn⊗ p) = µp(m, rn).

Thus µp is R-bilinear, and so we get an induced map

µ̃p : M ⊗R N →M ⊗R (N ⊗S P )

4i.e. a left R-module and right S-module such that the two multiplications are compatible: (rn)s = r(ns)
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m⊗ n 7→ m⊗ (n⊗ p).

Now define a map

φ : (M ⊗R N)× P →M ⊗R (N ⊗S P )

(ξ, p) 7→ µ̃p(ξ).

Let’s check this is S-bilinear. To check it is biadditive:

φ(ξ + ξ′, p) = µ̃p(ξ + ξ′) = µ̃p(ξ) + µ̃p(ξ
′) = φ(ξ, p) + φ(ξ′, p),

φ(ξ, p+ p′) = ˜µp+p′(ξ) =
n∑
k=1

mk ⊗ (nk ⊗ (p+ p′)) = φ(ξ, p) + φ(ξ, p′).

To check it is balanced:

φ(ξs, p) = µ̃p(ξs) =
n∑
k=1

mk ⊗ (nks⊗ p) = µ̃sp(ξ) = φ(ξ, sp).

Hence it is S-bilinear, and the map

φ̃ : (M ⊗R N)⊗S P →M ⊗R (N ⊗S P )

(m⊗ n)⊗ p 7→ m⊗ (n⊗ p)

is well-defined.

It remains to show φ̃ is an isomorphism. To do so, one may analagously construct a map
going in the other direction, and repeat the above procedure to show it is well-defined and
sends m⊗ (n⊗ p) 7→ (m⊗ n)⊗ p. Since such elements generate, this will suffice.

Proposition 2.16.

M ⊗R (
∐
α

Nα) ∼=
∐
α

(M ⊗R Nα).

Proof. There are the universal properties at play here: that of the tensor product and that
of the coproduct. We will need one to define the forward map and one to define the reverse
map.

First we will define the forward map. Consider the map

f : M × (
∐
α

Nα) ∼=
∐
α

(M ⊗R Nα)

(m, (nα)α) 7→ (m⊗ nα)α.

Let us check this is R-bilinear. To see it is biadditive:

f(m+m′, (nα)α) = ((m+m′)⊗ nα)α = (m⊗ nα +m′ ⊗ nα)α = f(m, (nα)α) + f(m′, (nα)α),

f(m, ((nα + n′α)α) = (m⊗ nα +m⊗ n′α)α = f(m, (nα)α) + f(m, (n′α)α).
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To see it is balanced:

f(mr, (nα)α) = (mr ⊗ nα)α = (m⊗ rnα)α = f(m, (rnα)α).

Hence we have an induced map

M ⊗ (
∐
α

Nα)→
∐
α

(M ⊗R Nα)

(m, (nα)α) 7→ (m⊗ nα)α.

For the other direction, the natural inclusion maps 1M ⊗ ia : M ⊗R Na → M ⊗R (
∐

αNα),
which are well-defined by the functoriality of the tensor product (Lemma  2.10 ), induce a
unique map g

M ⊗R Na

∐
α(M ⊗R Nα)

M ⊗R (
∐

αNα)

ia

1M⊗ia
g

which evidently sends (m⊗ nα)α 7→ (m⊗ (nα)α) as desired.

Proposition 2.17. Let M,N,P be A-modules. Then there are the following unique iso-
morphisms:

1.

M ⊗N ∼→ N ⊗M
m⊗ n 7→ n⊗m

2.

(M ⊗N)⊗ P ∼→M ⊗N ⊗ P ∼→M ⊗ (N ⊗ P )

(m⊗ n)⊗ p 7→ m⊗ n⊗ p 7→ m⊗ (n⊗ p)

3.

(M ⊕N)⊗ P ∼→ (M ⊗ P )⊕ (N ⊗ P )

(m⊗ n)⊗ p 7→ (m⊗ p, n⊗ p)

4.

A⊗M ∼→M

a⊗m 7→ am

Proof. Use universal property... this
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2.1.3 of algebras

Proposition 2.18. If A and B are k-algebras, then A ⊗k B is a k-algebra with respect to
the multiplication

a⊗ b · a′ ⊗ b′ = aa′ ⊗ bb′.

Proof. The tricky part, as is always the case when defining maps out of a tensor product, is
whether multiplication as defined above is well defined. We see this as follows: Consider the
map

A×B × A×B → A⊗k B
(a, b, a′, b′) 7→ aa′ ⊗ bb′.

One checks this is k-multilinear, hence there is an induced map

A⊗k B ⊗k A⊗k B = (A⊗k B)⊗k (A⊗k B)→ A⊗k B.

By the universal property in the other direction, this must correspond to a k-bilinear map

µ : (A⊗k B)× (A⊗k B)→ A⊗k B.

Since this should agree with our original map, we have

µ(a⊗ b, a′ ⊗ b′) = aa′ ⊗ bb′

as desired.

Corollary 2.19. The natural embeddings A → A ⊗k B and B → A ⊗k B are k-algebra
maps.

Theorem 2.20. If A,B are k-algebras, then A⊗kB satisfies the following universal property:
given any algebra homomorphisms fA : A → C and fB : A → C such that the images of
fA and fB commute in C, there exists a unique algebra homomorphism f̃ : A ⊗k B → C
making the following diagram commute:

A A⊗k B B

C

iA

fA
f̃

iB

fB

Proof. We employ the typical strategy in proving universal properties: first uniqueness, then
existence (because uniqueness will often tell us how to define the map).

Let us show the uniqueness of f̃ . So suppose it exists. Then

f̃(a⊗ b) =f̃(a⊗ 1 · 1⊗ b) = f̃(a⊗ 1)f̃(1⊗ b)
=f̃(iA(a))f̃(iB(b)) = fA(a)fB(b).
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So any map in place of f̃ making the diagram commute must be precisely fA(a)fB(b), which
shows uniqueness.

Now let us show existence. Consider the map

A×B → C

(a, b) 7→ fA(a)fB(b).

One checks this is k-bilinear. Thus there exists a k-module map f̃ : A ⊗k B → C sending
a⊗ b 7→ fA(a)fB(b). It remains to check this is an algebra map:

f̃(a⊗ b · a′ ⊗ b′) =f̃(aa′ ⊗ bb′) = fA(aa′)fB(bb′)

=fA(a)fA(a′)fB(b)fB(b′) = fA(a)fB(b)fA(a′)fB(b′)

=f̃(a⊗ b)f̃(a′ ⊗ b′),

where we have used the fact that the images of fA and fB commute.

Remark 2.21. This implies that A ⊗k B is the coproduct in the category of commutative
k-algebras.

Remark 2.22. If we are trying to get an algebra map out of the tensor product, we don’t
need to get a bilinear map or show there is a module map first: we can just directly check
the universal property. In this sense getting an algebra map is perhaps easier than getting
a module one (assuming now that we are working with modules instead of algebras, so that
the algebra map doesn’t exist and hence can’t just descend to a module map).

2.1.4 adjointness

Let k be a commutative ring.

By the universal property, k-linear maps V ⊗kW → X correspond to bilinear maps V ×W →
X. By Currying, these may be regarded as linear maps V → Homk(W,X). Hence:

Homk(V ⊗k W,X) ∼= Homk(V,Homk(W,X)).

More generally, given a not-neccessarily-commutative rings R, S, and given a right R-module
N , a left S-module P , and an (R, S)-bimodule M we have

HomS(N ⊗RM,P ) ∼= HomR(N,HomS(M,P )).

2.1.5 base change

Given a map φ : A→ B of rings, any B-module N becomes can be regarded as an A module
via pullback along φ: for any a ∈ A, define aN = φ(a)N . This defines a functor

res : BMod→ AMod

called restriction of scalars, perhaps inspired by the special case when φ is an inclusion map.
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We might ask if, given an A-module M , we can somehow push it forward to a B-module,
and in such a way that is compatible with restricting scalars. Indeed we can, be sending
M 7→ B ⊗AM , which we call extension of scalars.

Proposition 2.23. Let M be a left A-module. Then the map

ex : M → B ⊗AM
m 7→ 1⊗m

is the universal map of M to a B-module: given any B-module N (viewed as an A module
via restriction of scalars) and any A-module map f : M → N , there exists a unique map
f̃ : B ⊗AM → N making the following diagram commute:

B ⊗AM

M

N

f̃

i

f
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