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1 uncategorized

Proposition 1.1. Let X be a Banach space with identity 1. Let x ∈ X be such that
lim supn ‖xn‖ < 1. Then

(1− x)−1 =
∞∑
k=0

xk.

The above series is sometimes called the Neumann series.

Proof. Examining the partial sums,

lim
n→∞

(1− x)
n∑
k=0

xk = lim
n→∞

(
n∑
k=0

xk −
n∑
k=0

xk+1

)
= lim

n→∞
(1− xn+1) = 1.

Remark 1.2. The condition on x is implied by the radius of convergence theorem (Theorem
 5.2 ). The following conditions on x are at least as strong:

• ‖x‖ < 1

•
∑

n ‖xn‖ converges

Corollary 1.3 (Hadamard’s formula). Suppose λ, x are such that lim supn ‖λ−nxn‖1/n < 1.
Then

(λ1− x)−1 =
∞∑
k=0

xk

λk+1
.

Proof. Rewrite (λ1− x)−1 = λ−1(1− λ−1x)−1. By assumption we satisfy the conditions for
Proposition  1.1 , so

(λ1− x)−1 = λ−1
∞∑
k=0

λ−kxk =
∞∑
k=0

xk

λk+1
.
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Proposition 1.4. Let T : X → Y be a linear map between normed vector spaces. Then T
is continuous if and only if it is bounded.

Proof. Bounded implies continuous (if this isn’t clear, fill it in), even without the linearity
assumption. The content of the proposition is the other direction:

If T is continuous, then it is continuous at 0 ∈ X. Letting ε = 1, there exists δ > 0 such
that ‖x‖ = ‖x− 0‖ < δ implies ‖A(x)‖ = ‖A(x− 0)‖ = ‖A(x)− A(0)‖ < 1.

Now for arbitrary x ∈ X,

‖Ax‖ =
‖x‖
δ
· ‖A(δ

x

‖x‖
)‖

≤‖x‖
δ
· 1

=
1

δ
· ‖x‖.

Proposition 1.5. If a bounded linear operator T : X → Y between Banach spaces is
invertible, then it is bounded from below, in the sense that there exists c > 0 such that
‖Tx‖ ≥ c‖x‖ for all x ∈ X.

Proof. Suppose T is invertible. Then it is bijective, continuous, and linear, so by the bounded
inverse theorem (Theorem  3.6 ) its inverse T−1 is bounded. So there exists C > 0 such that
‖T−1y‖ ≤ C‖y‖. Substituting y = Tx, we get

‖Tx‖ ≥ 1

C
‖x‖.

Letting c = 1/C shows T is bounded below.
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2 topologies

2.1 weak and weak*

Consider the pairing

〈−,−〉 : X ×X∗ → C
(x, f) 7→ f(x).

This restricts to functions

〈−, f〉 : X → C
〈x,−〉 : X∗ → C.

Definition 2.1.
• The weak topology (on X) is the coarsest topology making the functions 〈−, f〉 con-

tinuous.
• The weak* topology (on X∗) is the coarsest topology making the functions 〈x,−〉

continuous.

Remark 2.2. The topologies in Definition  2.1 are “topologies of pointwise convergence”.
Taking the weak* topology, for example, the assertion that it is the coarsest topology making
the 〈x,−〉 continuous means (using the characterization of continuity by converging nets)
fn → f if and only if 〈x, fn〉 → 〈x, f〉 for all x, i.e. fn(x)→ f for all x.

Remark 2.3. Since the weak and weak* topologies are not a topology induced by a norm,
we will often have to work with nets rather than just sequences.

2.2 quotient

Proposition 2.4. Let X be a normed vector space, and V a closed linear subspace. Then
the quotient X/V is a normed vector space with respect to the quotient norm

‖[x]‖ = inf
v∈V
‖x+ v‖ = inf

x′∼x
‖x′‖.

Proof. X/V has classes [x] such that x ∼ x′ if and only if x− x′ ∈ V . move
to
foot-
note

check
linear,
w.d.

Now we will show the quotient norm is a norm.

• If [x] = 0, then x ∼ 0 so x ∈ V . Let v = −x. Then

‖[x]‖ = inf
v∈V
‖x+ v‖ = ‖x− x‖ = 0.

Conversely, if ‖[x]‖ = 0 then there exists (vn) ⊂ V such that ‖x + vn‖ → 0. Then
−vn → x in X. Since V is closed, it must be that x ∈ V , so x ∼ 0 and [x] = 0.
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• For nonzero λ ∈ C and x ∈ X,

‖[λx]‖ = inf
v∈V
‖λx+ v‖ = inf

v∈V
‖λx+ λv‖

=|λ| inf
v∈V
‖x+ v‖ = |λ| · ‖[x]‖.

• For all x, y ∈ X,

‖[x] + [y]‖ = inf
v∈V
‖x+ y + v‖

= inf
v,w∈V

‖x+ y + v + w‖

≤ inf
v,w∈V

(‖x+ v‖+ ‖y + w‖)

=‖[x]‖+ ‖[y]‖.

Hence it’s a norm.

Proposition 2.5. If moreover X is a Banach space, then so is X/V .

Proof. By Proposition  5.1 , it suffices to show that every absolutely convergent series is
convergent. Let ([xn]) ⊂ X/V be such that

∞∑
n=1

‖[xn]‖ <∞.

Then, by definition of the infimum, for each n there exists vn such that

‖xn + vn‖ < inf
v∈V
‖xn + v‖+

1

2n
= ‖[xn]‖+

1

2n
.

Hence
∞∑
n=1

‖xn + vn‖ <
∞∑
n=1

(
‖[xn]‖+

1

2n

)
=
∞∑
n=1

‖[xn]‖+ 1 <∞.

Since X is Banach, there exists y ∈ X such that

y =
∞∑
n=1

(xn + vn).

We claim
∞∑
n=1

[xn] = [y].

Calculate:

‖[y]−
n∑
k=1

[xk]‖ =‖[y −
n∑
k=1

xk]‖

4



= inf
v∈V
‖y −

n∑
k=1

xk + v‖

≤‖y −
n∑
k=1

xk −
n∑
k=1

vk‖ (defined above) = ‖y −
n∑
k=1

(xk + vk)‖ → 0.

This shows what we want.
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3 key theorems

3.1 Banach-Alaoglu

Theorem 3.1 (Banach-Alaoglu). If V is a normed vector space, then the closed unit ball
in V ∗ is compact in the weak* topology.

Proof. The idea is to show the closed unit ball in V ∗ is homeomorphic to a closed subset
of a compact set, in particular a set which is the product of compact sets (hence we need
Tychanoff’s theorem). Specifically:

For v ∈ V , let
Dv = {z ∈ C : |z| ≤ ‖v‖}.

Then each Dv is compact. Define

D =
∏
v∈V

Dv.

Then D is compact by Tychanoff’s theorem. We claim that BV ∗ is homeomorphic to a closed
subset of D.

Let us define a map exhibiting this proposed homeomorphism. For eavh v ∈ V , let

Φv : BV ∗ → Dv

f 7→ f(v)

and

Φ : BV ∗ → D

f 7→ (f(v))v∈V .
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First we verify Φ is continuous. It suffices to show that for any net (fα) ⊂ B∗ which converges
to f in the weak* topology, then Φ(fα)→ Φ(f). So let (fα) be such a net. Since convergence
in the weak* topology is pointwise convergence, it must be the case that fα(v) → f(v) for
all v ∈ V (Remark  2.2 ). But then

Φ(fα) = (fα(v))v∈V → (f(v))v∈V = Φ(f)

as desired.

We also claim Φ is injective. Indeed, if Φ(f) = Φ(g) then (f(v))v∈V = (g(v))v∈V so f(v) =
g(v) for all v, i.e. f = g. Thus there exists a continuous inverse from Im(Φ)→ BV ∗ .

Thus Φ is a homeomorphism onto its image. It remains to show that Im(Φ) is closed.
Consider a net (Φ(fα)) ⊂ Im(Φ) converging to d = (dv)v∈V ∈ D. We wish to show d ∈
Φ(BV ∗). Consider the function

f : X → C
x 7→ dx.

Then Φ(f) = d, and (Φ(fα))→ Φ(f). Then fα → f in the weak* topology, by the continuity
of Φ. In particular, this would mean f ∈ BV ∗ , and so Φ(f) = d ∈ Φ(BV ∗).

3.2 open mapping theorem

We present three major theorems (open mapping, bounded inverse, closed graph) which turn
out to be equivalent to each other, in the sense that they all imply each other. We choose
to prove the open mapping theorem, and derive the others from it. A technical aspect of all
of these theorems is that their proofs use the Baire category theorem (). ref bct

Theorem 3.2 (open mapping theorem). If A : X → Y is a surjective, continuous, linear
function between Banach spaces, then A is open.

Proof. The idea is to first observe it suffices to show the unit ball in X is contains a neigh-
borhood around the origin of Y . Then, to show this is the case under the conditions of the
theorem, we consider X as a union of open balls around the origin. Since A is surjective,
Y is the image of this union, hence can itself be expressed as some union of (closures of)
images of open balls in X. We then use the Baire category theorem to assert at least one of
the terms in the union has nonempty interior. We then show the unit ball in Y (essentially)
lies in the image of this open ball, and we rearrange constants to show the image of the unit
ball in X contains an open ball around the origin of Y .

Proposition 3.3. A linear map A : X → Y is open if and only if the image of the unit ball
in X contains a neighborhood around the origin in Y .

Proof. Let U ⊂ X be open. Translating and scaling are homeomorphisms, so without loss of
generality we assume U contains the unit ball in X. We want to show that, for any y ∈ A(U)
we can find a neighborhood of y contained in A(U).
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Let x be such tat Ax = y. Since U is open, there exists r < 1 such that Br(x) ⊂ U . Since
r < 1, we also have Br(0) ⊂ B1(0). By linearlity, A(x + Br(0)) = y + A(Br(0)). Now
A(Br(0)) must contain a neighborhood of the origin (of Y ), since B1(0) does by assumption,
and A(0) = 0. Call such a neighborhood P . Then y+P is an open neighborhood around y,
contained in the image of A(x + Br(0)) ⊂ A(U). Since we can do this for all y ∈ A(U), we
are done.

Now let A : X → Y be a surjective, continuous, linear map between Banach spaces. Let

U = BX
1 (0), V = BY

1 (0).

Then we can write
X =

⋃
k∈N

kU =
⋃
k∈N

BX
k (0).

Since A is surjective,

Y = A(X) = A(
⋃
k∈N

kU) =
⋃
k∈N

A(kU) =
⋃
k∈N

A(kU),

where we were able to pull out the infinite union because A is continuous. We have thus
expressed Y as a countable union of closed sets. Y has an interior point, so by the Baire
category theorem () there exists at least one k such that A(kU) has an interior point. ref

BCT
Since A(kU) has an interior point, there exists c ∈ A(kU) ⊂ Y and r > 0 such that
Br(c) ⊂ A(kU). In particular, both c, (c+ rv) ∈ A(kU) for any v ∈ V . So

rv =(c+ rv)− c
∈A(kU)− A(kU)

=A(kU) + A(−kU)

=A(kU) + A(kU)

⊂A(kU) + A(kU)

⊂A(2kU).

We were able to move the substraction insideA by both the continuity of addition/substraction
(to bring it under the closure) and the continuity of A (to then bring it inside A). By con-
tinuity again, we get

V ⊂ A

(
2k

r
U

)
.

Write L = 2k
r

, so that V ⊂ A(LU).

Proposition 3.4. For any y ∈ Y and any ε > 0, there exists x ∈ X such that

‖x‖ ≤ L‖y‖, ‖y − Ax‖ < ε.
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Proof. For any m > ‖y‖, we know y
m
∈ V , and so there exists a sequence (xn) ∈ U such that

lim
n→∞

A (Lxn) =
y

m
.

By continuity,
lim
n→∞

A (mLxn) = y.

We can then pick an x from the above sequence such that ‖Ax− y‖ < ε. We also know that
x ∈ BX

mL(0), and so ‖x‖ < mL. Since the inequality holds for any m > ‖y‖, we have that
‖x‖ ≤ L‖y‖.

Proposition 3.5. V ⊂ A(2LU).

Proof. Fix v ∈ V . First we will construct a sequence (xn) such that

‖xn‖ <
L

2n
, ‖v − A(

n∑
i=1

xi)‖ <
1

2n
.

We proceed by induction. For the base case the result follows from Proposition  3.4 . Suppose
we have constructed xn. Then, setting y = v − A(

∑n
i=1 xn), it follows that y ∈ V by the

induction step. Hence we can find xn+1 such that

xn+1 <
L

2n+1
, ‖v − A(

n+1∑
i=1

xi)‖ = ‖y − Axn+1‖ <
1

2n+1

as desired. Thus we have constructed the sequence.

Write sn for the nth partial sum, and consider the sequence (sn). Note

∞∑
n=1

‖xn‖ ≤
∞∑
n=1

L

2n
= L < 2L <∞.

So the series
∑

n xn is absolutely convergent, hence convergent by Proposition  5.1 , i.e. the
sequence (sn) converges, call its limit x. Furthermore, by the triangle ineqality,

‖x‖ =

∥∥∥∥∥
∞∑
n=1

xn

∥∥∥∥∥ ≤
∞∑
n=1

‖xn‖ < 2L,

i.e. x ∈ 2LU .

Now by construction, ‖v − Asn‖ → 0, and so Asn → v. By continuity, it must be that
Ax = v. Hence v ∈ A(2LU). Since v ∈ V was arbitrary, V ⊂ A(2LU). Then V/2L ⊂ A(U),
and so A(U) contains a neighborhood around the origin in Y .

Theorem 3.6 (bounded inverse theorem). IfA : X → Y is a bijective, continuous (bounded),
linear function between Banach spaces, then A−1 is continuous (bounded).
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Proof. For U ⊂ X open, (A−1)−1(U) = A(U) is open by Theorem  3.2 . The substitution of
“bounded” for “continuous” is justified by Proposition  1.4 .

Definition 3.7. The graph of a function f : X → Y is the set

Γ(f) := {(x, f(x))} ⊂ X × Y.

Theorem 3.8 (closed graph theorem). Let A : X → Y be a linear map between Banach
spaces. Then the following are equivalent:

1. A is continuous.

2. Γ(A) ⊂ X × Y is closed.

Proof. (1⇒ 2) Suppose A is continuous. We wish to show Γ(A) is closed, that is, for every
convergent sequence (xn, Axn) → (x, y), we have that (x, y) ∈ Γ(A). By definition of the
product topology, the projection maps πX and πY are continuous. Hence

lim
n→∞

xn = lim
n→∞

πX(xn, Axn) = πX(x, y) = x,

lim
n→∞

Axn = lim
n→∞

πY (xn, Axn) = πY (x, y) = y.

Since A is also continuous,
y = lim

n→∞
Axn = Ax.

Thus (x, y) ∈ Γ(A).

(2 ⇒ 1) Suppose Γ(A) is closed. We wish to show A is continuous. First note that Γ(A)
is Banach, being a closed subset of the Banach space X × Y . Consider the function G :
X → Γ(A). It is bijective, so consider its inverse G−1. Note G−1 is continuous since it is the
restriction of the continuous function πX . One also checks it is linear. Thus G−1 : Γ(A)→ X
is a bijective, continuous, linear function between Banach spaces, so G is continuous by the
bounded inverse theorem (Theorem  3.6 ). Then A = πY ◦G is continuous.

3.3 uniform boundedness principle

This principle states that if a collection of continuous, linear operators F from a Banach
space X to an arbitrary normed vector space Y is pointwise bounded, then it is uniformly
bounded.

Theorem 3.9 (uniform boundedness principle). Let X, Y, F be as above. If

sup
T∈F
‖Tx‖ <∞

for all x ∈ X, then
sup
T∈F
‖T‖ <∞.
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Remark 3.10. In particular, F may consist of a single operator T , in which case the theorem
says pointwise boundedness of T implies uniform boundedness of T . But the theorem is
stronger in that it generalizes that case, in some sense, to a collection of operators.

Proof. The idea is to use the Baire category theorem to find a subset of X which is bounded
by all T ∈ F and which has nonempty interior. Then, for any unit vector u ∈ X, we can
bound ‖Tu‖ by values of T on that subset, which is bounded.

As in the theorem, suppose
sup
T∈F
‖Tx‖ <∞.

Define
Xn = {x ∈ X : sup

T∈F
‖Tx‖ ≤ n}

Proposition 3.11. Xn is closed.

Proof. Let (xn) ⊂ Xn. We need to show that if (xn)→ x ∈ X, then x ∈ Xn. We calculate

sup
T∈F
‖Tx‖ = sup

T∈F
‖T ( lim

i→∞
xi)‖

= sup
T∈F

( lim
n→∞

‖Txi‖)

≤ sup
T∈F

n = n.

Thus x ∈ Xn.

Continuing, we can write

X =
⋃
n∈N

Xn,

so by the Baire category theorem () there exists m ∈ N such that Xm has non empty interior. ref bct
In particular, there exists ε > 0 and x0 ∈ Xm such that Bε(x0) ⊂ Xm.

Now let u ∈ X be such that ‖u‖ = 1, and also let T ∈ F . Then

‖Tu‖ =
1

ε
‖T (x0 + εu)− Tx0‖

≤1

ε
(‖T (x0 + εu)‖+ ‖Tx0‖)

≤1

ε
(m+m) =

2m

ε
.

Finally,

sup
T∈F
‖T‖ = sup

T∈F

(
sup
‖u‖=1

‖Tu‖

)
≤2m

ε
<∞

and we are done.
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4 Spectrum

4.1 basics

We introduce spectral theory here in the more general context of (not necessarily complete)
normed vector spaces X with unit 1.

Let U ⊂ X , and let T : U → X be a linear operator.

Definition 4.1. λ ∈ C is called regular if the following conditions hold:
R1. (T − λ1)−1 exists.
R2. (T − λ1)−1 is bounded.
R3. (T − λ1)−1 has a dense (in X) domain, i.e. Im(T − λ1) is dense in X.

Definition 4.2. The set of regular values is called the resolvent set of T , and is denoted
ρ(T ).

Definition 4.3. The function RT mapping λ 7→ (T −λ1)−1 is callend the resolvent function.

Definition 4.4. The spectrum of T is defined as σ(T ) := C \ ρ(T ).

Remark 4.5. For a Banach space G and T ∈ B(G), the spectrum is usually defined as

σ(T ) = {λ ∈ C : (T − λ1)−1 6∈ B(G)}.

(the above notation does not suppose the existence of (T − λ1)−1). Let us show that this is
equivalent to Definition  4.4 .

To begin, suppose λ is regular. Then (T − λ1)−1 extends uniquely to a bounded linear
operator G → G . Hence (T −λ1)−1 ∈ B(G) and λ ∈ σ(T ) according to the definition above. ref

from
thesis

Conversely, suppose λ is such that (T − λ1)−1 ∈ B(G). Then immediately λ is regular.

Also for Banach spaces, the resolvent set is sometimes defined as

ρ(T ) = {λ ∈ C : (T − λ1) is bijective}.
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This is equivalent to Definition  4.2 . To see this, first suppose (T − λ1) is bijective. Then by
the bounded inverse theorem (Theorem  3.6 ), we get that (T − λ1)−1 is also bounded. Thus
λ is regular. Conversely, suppose λ is regular. Then as above, (T − λI)−1 extends uniquely
to a bounded linear operator G → G, so in particular (T − λ1) is bijective.

The spectrum of a linear operator T can be decomposed as follows:

property of λ
λ belongs to:

 R1  R2  R3 

7 7 7 σp(T )

3 7 3 σc(T )

3 3 7
σr(T )

3 7 7

Remark 4.6.  R2 and  R3 can only be satisfied if  R1 is satisfied.

Definition 4.7. σ(T ) can be decomposed into the following disjoint sets:
• the point spectrum, denoted σp(T ).
• the continuous spectrum, denoted σc(T ).
• the residual spectrum, denoted σr(T ).

Definition 4.8. Let X be a Banach space, and T ∈ B(X). A scalar λ is called an approx-
imate eigenvalue of T if T − λI is not bounded below, i.e. there exists a sequence of unit
vectors (xn) such that Txn− λxn → 0. Such a sequence (xn) is called a Weyl sequence. The
set of approximate eigenvalues of T is denoted σap(T ).

Proposition 4.9. Approximate eigenvalue lie in the spectrum.

Proof. Let λ be an approximate eigenvalue, and (xn) a Weyl sequence. If T − λI is not
injective, then λ ∈ σp(T ) ⊂ σ(T ). So it suffices to consider the case when T −λI is injective.
In that case, suppose (T −λI)−1 is bounded (hence continuous). But then limn→∞ ‖xn‖ = 1
contradicts the computation

lim
n→∞

xn = lim
n→∞

(T − λI)−1(T − λI)xn

=(T − λI)−1 lim
n→∞

(T − λI)xn

=(T − λI)−1(0) = 0.

In other words, if λ satisfies  R1 then it fails  R2 . Thus λ ∈ σ(T ).

Corollary 4.10. σp(T ) ∪ σc(T ) ⊂ σap(T ).

Definition 4.11. The spectral radius is defined as

ρ(x) := sup
λ∈σ(x)

|λ|.
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5 extensions of classical analysis

5.1 series

Proposition 5.1. A normed vector space X is Banach if and only if every absolutely con-
vergent series (converges in C) converges (in X).

Proof. First we will show the forward direction. So suppose X is Banach. Suppose the
sequence (xn) is absolutely convergent, i.e.

∑
n ‖xn‖ <∞. Then, for any ε > 0, there exists

N > 0 such that for any n,m > 0 (assume without loss of generality that m > n) we have,
in particular,

m∑
i=n+1

‖xi‖ < ε.

By the triangle inequality, we also have∥∥∥∥∥
m∑

i=n+1

xi

∥∥∥∥∥ < ε.

Another way to write this: ∥∥∥∥∥
m∑
i=1

xn −
n∑
i=1

xn

∥∥∥∥∥ < ε,

which shows that the partial sums form a Cauchy sequence. Since X is Banch, the partial
sums converge (in X).

Now we will show the reverse direction, so suppose every absolutely convergent series con-
verges. Let (xn) be Cauchy in X. We need to show that it converges.

Since (xn) is Cauchy, there exists Nm > 0 such that, for all k, k′ ≥ Nm, we have ‖xk−xk′‖ <
m−2. Now pick the sequence (Nm)∞1 such that it is increasing. Then

∞∑
m=1

‖xNm − xNm+1‖ <
∞∑
m=1

1

m2
<∞.

By assumption, absolute convergence implies convergence so

∞∑
m=1

(xNm − xNm+1)
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converges (in X), call its limit x′. But notice that the above sum is telescoping, i.e.
∞∑
m=1

(xNm − xNm+1) = lim
m→∞

(xN1 − xNm) = xN1 − lim
m→∞

xNm = x.

Thus limm→∞ xNm converges, and since (xNm) is a subsequence of a Cauchy sequence, the
Cauchy sequence must also converge to the same limit.

Theorem 5.2 (radius of convergence). The series

F (λ) =
∞∑
n=0

λnxn

converges absolutely (hence in X, by Proposition  5.1 ) if

lim sup
n
|λ| · ‖xn‖1/n < 1

and does not converge if
lim sup

n
|λ| · ‖xn‖1/n > 1.

Proof. First we will show the claim about convergence. Suppose lim supn |λ| · ‖xn‖1/n < 1.
Since lim sup is nondecreasing, there exists N > 0 and 0 < r < 1 such that supn≥N |λ| ·
‖xn‖1/n < rn < 1, i.e.

sup
n≥N
|λ|n · ‖xn‖ < rn < 1.

This implies
∞∑
n=N

|λ|n · ‖xn‖ <
∞∑
n=N

rn.

Since 0 < r < 1,
∞∑
n=N

=
∞∑
n=1

rn −
N−1∑
n=1

rn =
1

1− r
− 1− rN

1− r
<∞,

and this implies
∞∑
n=0

|λ|n · ‖xn‖

converges.

For the divergence claim, suppose now that lim supn |λ| · ‖xn‖1/n > 1. But then we can find
a subsequence {xnk

} for which
|λ| · ‖xnk

‖1/nk > 1,

then
lim
nk→∞

|λ|nk · ‖xn‖ =∞,

and the sum
∞∑
n=0

λnxn

surely diverges if its terms don’t approach 0 in norm.
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5.2 function kinds

Let Ω ⊂ C be open, and let X be a complex Banach space.

Definition 5.3. A function f : Ω → X is analytic if, for every λ0 ∈ Ω, there exists a
neighborhood U 3 λ0 in which f is the uniform limit of a power series with coefficients in X
centered at λ0; i.e. for every λ ∈ U

f(λ) =
∞∑
k=0

ak(λ− λ0)k

(where ak ∈ X).

Definition 5.4. A function f : Ω→ X is holomorphic or differentiable at a point λ0 ∈ Ω if

f ′(λ0) := lim
λ→λ0

f(λ)− f(λ0)

λ− λ0

exists (in X). We say that f is holomorphic on S ⊂ Ω if it is holomorphic at every point
λ0 ∈ S.

Proposition 5.5 (differentiation properties).

1. (chain rule) If f : Ω→ X is holomorphic at λ0, and φ : X → C is a continuous linear
functional, then φ ◦ f is holomorphic (in the sense of complex numbers) and

(φ ◦ f)′(λ0) = φ(f ′(λ)).

Proof.

1. Since φ is a linear functional, we can pull out (or push in) scalars, and since it is
continuous we can bring limits in, so

(φ ◦ f)′(λ0) = lim
λ→λ0

φ(f(λ))− φ(f(λ0))

λ− λ0

=φ

(
lim
λ→λ0

f(λ)− f(λ0)

λ− λ0

)
=φ(f ′(λ0)).

5.3 contour integrals

TODO: generalize to not just continuous functions.

Let γ : [a, b]→ C be a piecewise smooth path in Ω ⊂ C. Let f : Ω→ X be continuous, and
let P = {t0, t1, . . . , tn} be a partition of [a, b].

15



5.4 classical theorems

Theorem 5.6 (Louisville’s theorem). TODO
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