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1 Galois connections

Definition 1.1. Let X, Y be partially-ordered sets, and suppose we have maps

X
f

�
g
Y

such that
• (order reversing)

x1 ≤ x2 ⇒ f(x1) ≥ f(x2)

y1 ≤ y2 ⇒ g(y1) ≥ g(y2)

• (inflationary)

g(f(x)) ≥ x ∀x ∈ X
f(g(y)) ≥ y ∀y ∈ Y

In this case, we say that f and g form an antitone Galois connection.

Proposition 1.2. Let f, g be an antitone Galois connection. Then they restrict to bijections
on their images:

im(g)
f̃

�
g̃

im(f).

Proof. We show that f restricts to a bijection, and the case for g is analagous. By the
inflationary property, x ≤ g(f(x)) for any x ∈ X. Then by the order reversing property,
f(x) ≥ f(g(f(x))). But applying the inflationary property to y = f(x) yields f(x) ≤
f(g(f(x))), and so f(x) = f(g(f(x))).

Remark 1.3. Since g ◦ f is the identity on im(g), we have g ◦ f ◦ g = g on all of Y . Then
g ◦ f) ◦ (g ◦ f) = g ◦ f , so g ◦ f is idempotent on all of X. We often associate idempotent
operators with closure-like qualities. So we may think about

g(f(X)) ⊂ X

as a sort of “closed object” in X.
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Example 1.4 (classical Galois theory). Let K/k be a finite Galois extension with Galois
group Gal(K/k). Then there is an antitone Galois connection between the intermediate
fields k ⊂ F ⊂ K and the subgroups H < Gal(K/k), given by sending F 7→ Gal(K/F ) and
H 7→ KH (the subfield of K fixed by the automorphisms in H).

By the above, this statement is straightforward, provided we can show that every subgroup
of Gal(K/k) is isomorphic to Gal(K/F ) for some intermediate field F , and that every inter-
mediate field of K/k consists exactly of the elements of K fixed by the automorphisms in a
subgroup of Gal(K/k).

Corollary 1.5. Suppose f, g are

• (order preserving)

• (inflationary on X)
g(f(x)) ≥ x ∀x ∈ X

• (deflationary on Y )
f(g(y)) ≤ y ∀y ∈ Y

Then f, g restrict to bijections on their images.

Proof. Apply Proposition  1.2 to X and Y , with the order on Y reversed.

Example 1.6 (extension/contraction of ideals). Let φ : A → B be a ring map (under our
assumptions). Consider the pair

{ideals in A}� {ideals in B}
a 7→ ae

be ← b

where

• ae is the extension of a in B, i.e. Bφ(a) which means the B-ideal generated by φ(a).

• be is the ... this

Example 1.7. As an extension of the previous example, let a be an ideal and consider the
quotient map A→ A/a... finish

2 motivating example: the Gelfand-Kolmogorov theo-

rem

Definition 2.1. Let (X, d) be a compact metric space. Let

OX := C(X) := C(X,R)

X := Specm(OX) := {maximal ideals m ⊂ OX}.
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Definition 2.2. For all x ∈ X, consider the evaluation map

OX
εx−→ R

f 7→ f(x)

We write mx := ker(εx) ⊂ OX .

Proposition 2.3. mx ⊂ OX is a maximal ideal.

Proof. The quotient OX/mx
∼= R is a field.

Definition 2.4. For m ∈ Specm(OX), define

v(m) := {x ∈ X : f(x) = 0 for all f ∈ m}.

We call v(m) the vanishing locus of m.

Remark 2.5. mx ⊂ OX and v(m) ⊂ X are in some sense dual notions: mx is the set of
functions which vanish at x, while v(m) is the set of points x on which each f ∈ m vanishes.

Proposition 2.6 (weak Nullstellensatz). For m ∈ X, the vanishing locus v(m) is nonempty.

Proof. Suppose v(m) is empty. Then for all x ∈ X there exists fx ∈ m such that fx(x) 6= 0.
Then also f 2

x(x) 6= 0 (and f 2
x ∈ m). For the sake of notation we replace fx with f 2

x , whence
we can now assume fx(x) > 0 strictly.

We claim fx ≥ 0 on all of X. Let’s show this. Since fx(x) > 0 and fx is continuous, there
exists a neighborhood Ux of x such that fx|Ux > 0. Doing this process for all x ∈ X yields an
open cover {Ux}x∈X such that fx|Ux > 0. Since X is compact, we may find a finite subcover
U1, . . . UN . Define

f = fx1 + · · ·+ fxN .

By construction f ∈ m. Also f(x) > 0 for all x ∈ X, since there exists j such that x ∈ Uj
and so fxj(x) > 0 and fxi(x) ≥ 0 for all i 6= j. But then 1/f is continuous, so 1 ∈ m which
contradicts the maximality of m.

Remark 2.7. Compare with Theorem 2.12 in cstar . ref

Proposition 2.8. The map

X −→ Specm(OX)

x 7→ mx

is bijective.

Proof. First we show injectivity. Suppose p 6= q ∈ X. Consider the functions

fq,δ =

{
δ − d(x, q) d(x, q) > 0

0 otherwise
.
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For any δ > 0 and q ∈ X it then follows that fq,δ ∈ OX . Now let δ = 1
3
d(p, q). Then

fq,δ ∈ mp but not in mq. This shows injectivity.

For surjectivity, pick some m ∈ Specm(OX). By Proposition  2.6 , there exists x ∈ v(m), so
in particular m ⊂ mx := ker(εx). But since m is maximal, it must be that m = mx.

We have thus achieved a setwise correspondence. One way of thinking about this is that we
can recover the points of X from Specm(OX) (and vice versa). A natural next question is
whether we can recover the topology on X as well.

Definition 2.9. For S ⊂ X, define

I(S) = {f ∈ OX : f |S = 0} ⊂ OX .

For E ⊂ OX , define

V (E) = {x ∈ X : f(x) = 0 for all f ∈ E} ⊂ X.

Proposition 2.10. We make the following observations:

1. For x ∈ X,
I({x}) = mx.

2. For S ⊂ X,

I(S) =
⋂
x∈S

I({x}) =
⋂
x∈S

mx ⊂ OX

is an ideal (). It is proper if S is nonempty, by Proposition  2.6 . ref

3. I is order reversing:
S1 ⊂ S2 ⊂ X ⇒ I(S1) ⊃ I(S2).

4. The pair I, V is inflationary on X:

S ⊂ X ⇒ S ⊂ V (I(S)).

5. E is order reversing:

E1 ⊂ E2 ⊂ OX → V (E1) ⊃ V (E2).

6. The pair I, V is inflationary on OX :

E ⊂ OX ⇒ E ⊂ I(V (E)).

Corollary 2.11. The maps {
subsets of

X

} I

�
V

{
ideals in
OX

}
form an antitone Galois connection.
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Proposition 2.12. If E ⊂ OX , then V (E) = V (OXE), where OXE ⊂ OX is the ideal
generated by E.

Proof. Since E ⊂ OXE and V is order reversing, we have that V (E) ⊃ V (OXE). Conversely,
let a ∈ V (E). Then there f(a) = 0 for all f ∈ E. But any h ∈ OXE has the form
h =

∑
i gifi, where gi ∈ OX and fi ∈ E. Then it follows that h(a) = 0, so a ∈ V (OXE), and

hence V (E) ⊂ V (OXE).

Recall that we though of images of maps belonging to an antitone Galois connection as
“closed” in some sense. The next proposition shows that this notion coincides with the
topological one in this case:

Proposition 2.13. For a ⊂ OX an ideal, V (a) ⊂ X is closed in the topological sense.

Proof. The arbitrary union of closed sets is closed, and

V (a) =
⋂
f∈a

V (f) =
⋂
f∈a

f−1({0})

and {0} ⊂ X is closed and f is continuous, hence f−1({0}) is closed.

So “closed” in the sense of Galois connections implies closed in the topological sense. Recall
that the composition of the two functions in a Galois connection were thought of as acting
like closures. This following makes this concrete in the topological sense:

Proposition 2.14. If S ⊂ X, then V (I(S)) = S.

Proof. By the previous proposition, we know V (I(S)) is closed, and by the inflationary
property S ⊂ V (I(S)), and so S ⊂ V (I(S)). Conversely, it suffices to show that if x 6∈ S
then x 6∈ V (I(S)). So x 6∈ S implies there exists an ε-ball centered at x which avoids S.
Take δ = ε/2. Then the bump function fx,δ is 0 on S, and hence fx,δ ∈ I(S). But also
fx,δ(x) = δ > 0, and so x 6∈ V (I(S)).

Corollary 2.15. Let a ⊂ OX . Then points in V (a) ⊂ X corresponds to maximal ideals
a ⊂ b ⊂ OX containing a.

Proof. Let x ∈ V (a). Then {x} ⊂ V (a) and by the order-reversing property I({x}) ⊃
I(V (a)) ⊃ a. But I({x}) = mx.

Definition 2.16. For an ideal a ⊂ OX , define

V(a) = {m ∈ Specm(OX : m ⊃ a)} ⊂ Specm(OX).

The previous corollary suggests V(a) ⊂ OX corresponds to the points of V (a) ⊂ X.

Corollary 2.17. V(−) is order reversing.

Recalling the bijection in Proposition  2.8 , denote by m(V (f)) the image of V (f) ⊂ X under
the map x 7→ mx.
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Proposition 2.18. m(V (f)) = V((f)).

Proof. x ∈ V (f) if and only if f(x) = 0 if and only if f ∈ mx if and only if (f) ⊂ mx if and
only if mx ∈ V((f)).

Corollary 2.19. If a ⊂ OX is an ideal, then m(V (a)) = V(a).

Proof. We calculate

m(V (a)) = m

(⋂
f∈a

V (f)

)
=
⋂
f∈a

m(V (f)) =
⋂
f∈a

V(f) = V (a,

where the commuting with
⋂

is justified since m(−) is bijective (Proposition  2.8 ) and we
also used the fact that V (f) = V ((f)) . ref

So since V (a) ⊂ X is closed, and V(a) ⊂ OX corresponds to it, we may think of V(a) as
closed too:

Definition 2.20. The topology on Specm(OX) whose closed sets are of the form V(a) for
some ideal a ⊂ OX is called the Zariski topology on Specm(OX).

Corollary 2.21. m(−) : X → Specm(OX) is a homeomorphism.

Proof. It is bijective by Proposition  2.8 . Suppose S ⊂ X is closed. Then it is equal to
V (I(S)). Since I(S) is an ideal, it follows that m(V (I(S))) = V(I(S)) which is closed by
definition. Hence the map is closed.

Definition 2.22. For f ∈ OX , define the distinguished open set in X by

D(f) := X − V (f).

Dually, define an open set in Specm(OX) by

D(f) := X − V(f).

Corollary 2.23. m(D(f)) = D(f).

Proposition 2.24. The distinguished open sets form a basis for the topology on X.

Proof. The open balls are a basis for the topology on X. But B(x, ε) = D(fx,ε). check
holo

So we have built up that for a compact metric space X, we may associate a commutative
R-algebra OX , and can again obtain a (space homeomorphic to our original) compact metric
space. An outstanding question is whether a continuous function φ : X → Y induces a
continuous map Specm(OX)→ Specm(OY ).

Proposition 2.25. A continuous function φ : X → Y induces a ring homomorphism φ# :
OY → OX in the other direction sending f 7→ f ◦ φ.
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Corollary 2.26. φ : X → Y induces a function from the ideals of OX to the ideals of OY ,
sending a to its contraction (φ#)−1(a).

This is almost what we want: we want this to restrict to maximal ideals.

Proposition 2.27. φ̃ carries maximal ideals to maximal ideals, hence restricts to a map

φ̃ : Specm(OX)→ Specm(OY ).

Moreover, φ̃(mx) = mφ(x). diagram

The last statement of the propositionis telling us that the algebraic map φ̃ on maximal
ideals encodes all the information about our initial continuous function φ. This is reliant on
the crucial fact, which is false in general, that the contraction of a maximal ideal along is
maximal.

Proof. Now we will show (φ#)−1 = mφ(x). Let f ∈ mφ(x). Then 0 = f(φ(x)) = (φ#(f))(x),
which shows φ#(f) ∈ mx and hence f ∈ (φ#)−1(mx) since the contraction of a maximal ideal
is maximal by the first part of the proof. So mφ(x) ⊂ (φ#)−1(mx). Equality follows since
mφ(x) is maximal. first

part
Corollary 2.28. We have a pair contravariant functors{

compact metric
spaces

} O(−)

�
Specm(−)

{
commutative
R-algebras

}
and Specm(−)◦O(−) is naturally equivalent to the identity on the category of compact metric
spaces.

Remark 2.29. It is not true that this is an equivalence of categories. why?

3 affine algebraic varieties

Just as one may begin to consider manifolds as embedded in Euclidean space, we will begin
to consider varieties within affine space.

In the following, fix the field k to be an algebraically closed field.

Definition 3.1. Affine n-space (over k) is, as a set, An = kn. We will write its elements as
a = (a1, . . . , an) where ai ∈ k.

Observe that every polynomial f ∈ k[X1, . . . , Xn] determines a function f̂ : An → k on affine
space by evaluation:

f̂(a1, . . . , an) = f(a1, . . . , an).

It is not immediately obvious that f̂ = 0 implies f = 0. For instance, consider the finite field
Fp of p elements. In this field we have the identity xp = x for all elements x. In particular,
the polynomial Xp − X vanishes on all of Fp, even though this is not 0 in the polynomial
ring Fp[X]. However, this situation is impossible under our assumptions:
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Proposition 3.2. The map

k[X1, . . . , Xn]→ Hom(An, k)

f 7→ f̂

is injective.  

1
 

Proof. We induct on n.

For n = 1, consider a nonzero f ∈ k[X]. This has only finitely many roots, and since k is
infinite it must be that f̂ 6= 0.

For n > 1. consider a nonzero f ∈ k[X1, . . . , Xn]. We may regard this as a polynomial
in k[X1, . . . , Xn−1][Xn]. Now if degXn(f) = 0, then f ∈ k[X1, . . . , Xn−1] which is already
handled by the induction hypothesis. So suppose d = degXn(f) > 0. Then

f =
d∑
j=0

fjX
j
n

for some fj ∈ k[X1, . . . , Xn] with fd 6= 0. By induction, f̂d 6= 0 so there exists (a1, . . . , an−1) ∈
An−1 such that fd(a1, . . . , an−1) 6= 0. Let

g = f(a1, . . . , an−1, Xn) =
d∑
j=1

fj(a1, . . . , an−1)Xj
n ∈ k[Xn].

Then g 6= 0. By the n = 1 case there exists b ∈ k such that

0 6= g(b) = f(a1, . . . , an−1, b) = f̂(a1, . . . , an−1, b)

which shows f̂ 6= 0.

Definition 3.3. The coordinate ring of An is

Γ(An) = k[X1, . . . , Xn].

The function field of An is the fraction field of its coordinate ring, i.e.

K(An) = Frac(Γ(An)) = k(X1, . . . , Xn).

Definition 3.4. For a subset E ⊂ Γ(An), we define its vanishing locus as

V(E) := {a ∈ An : f(a) = 0 for all f ∈ E}.

Conversely, any subset of An that is a vanishing locus as above is called an affine algebraic
set.

1this proposition is true for any infinite field
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Definition 3.5. Given a subset S ⊂ An, define its vanishing ideal to be

I(S) := {f ∈ Γ(An) : f |S = 0}.

Proposition 3.6. I(S) is an ideal.

Proof. Suppose f, g ∈ I(S). Then for any s ∈ S, we have (f + g)(s) = f(s) + g(s) = 0 hence
f + g ∈ I(S). Now let h ∈ Γ(An). Then fg(s) = f(s)g(s) = 0 so fg ∈ I(S).

Proposition 3.7. The pair{
subsets of

An

} I(−)

�
V(−)

{
ideals in
Γ(An)

}
forms an antitone Galois connection.

Proof. prove

Corollary 3.8. V(E) = V(〈E〉), where 〈E〉 is the ideal generated by E.

Theorem gives us an inverse bijection on the images of these functions, but we still need to ref
determine what those images are. Based on Remark , we want im(V(−)) ⊂ An to be like

ref“closed sets” and im(I(−)) to be like “closed ideals”. One direction is not so difficult:

Proposition 3.9. im(V(−)) is the set of affine algebraic sets.

Proof. It is clear by definition that everything in im(V(−)) is an affine algebraic set. It
remains to show that every affine algebraic set has this form. Well by definition every affine
algebraic set has the form V(E) for some subset E ⊂ Γ(An). By Corollary  3.8 , this is the
same as V(〈E〉), and we are done.

If we consider I(−), the situation is more subtle, and is essentially the content of Hilbert’s
Nullstellensatz. For example, we can imagine the following situation to believe that the
image is not all ideals in Γ(An):

Example 3.10. Consider a nonzero f ∈ a. Consider the ideal a = 〈fN〉 for some N > 1.
By construction it is an ideal in Γ(An).

Suppose a ∈ V(a). Then
0 = fN(a) = f(a)N ,

implying f(a) by our assumptions on k (in particular it is a field, hence has no zero divisors).
Since this holds for all a ∈ V(a), we see that f ∈ I(V(a)).

However, the point of our construction was that f is not necessarily in a, while fN is. In
other words, f ∈

√
a. This suggests we should be considering the radical ideals instead of

all ideals.

Corollary 3.11. If V ⊂ An is an algebraic subset, then I(V ) is radical, i.e. I(V ) =
√

I(V ).
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Now observe that a function f
g
∈ K(An) defines a function

An −V({g})→ k.

Definition 3.12. An element of K(An) defined on all of An is called a regular function.

By the above observation, a function f
g

is regular if g is nowhere-vanishing. conversely?

Definition 3.13. Let V ⊂ An be an algebraic set. A function f : V → k is called regular if
it is the restriction of a regular function on K(An).

Eventually we will want to define regular functions independently of the ambient affine space.
For the moment, we have a surjection

Γ(An)
res−→ Γ(V )

whose kernel consists of regular functions vanishing on V .

Corollary 3.14.

Γ(V ) ∼=
Γ(An)

I(V )
∼=
k[X1, . . . , Xn]

I(V )
.

Example 3.15. Consider the algebraic set V = V(Y − X2) ⊂ A2, where (Y − X2) ⊂
Γ(A2) = k[X, Y ] is an ideal. We will show that the geometric correspondence in affine space

A1
ψ

�
φ
V ⊂ A2

corresponds to the algebraic correspondence of rings

Γ(A1)
φ#

�
ψ#

Γ(V ).

First consider the situation on rings. By Corollary  3.14 , we know

Γ(V ) =
k[X, Y ]

(Y −X2)
.

As a ring, this is generated by {1, X}, since k[X, Y ] is generated by {1, X, Y } and in the
quotient ring Y −X2 = 0, i.e. Y = X2. This provides an explicit isomorphism

k[X, Y ]

(Y −X2)
→ k[T ]

X 7→ T.

On the level of affine space, consider the maps
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A2

A1

φ(x, y) = xψ(t) = (t, t2)

One verifies that this determines a bijection A1 → V .

How do we connect these two correspondences? Consider the map

φ# : Γ(A1)→ Γ(V )

T 7→ T ◦ φ.

Intuitively, this sends the polynomial T to the polynomial which picks out the first coordi-
nate, i.e. the polynomial X. Now consider the map

ψ# : Γ(V )→ Γ(A1)

f̄ 7→ f̄ ◦ ψ.

In particular, this sends the polynomial Y (which picks out the second coordinate) to T 2.

If we regard {1, X, Y } as generators of k[X, Y ] = Γ(A2), then the correspondence on the
level of rings is given by X 7→ T and Y 7→ T 2.

Which rings arise as Γ(V ) for some algebraic set V ⊂ An? For one, we know every Γ(V )
must hhave the following form:

Γ(V ) =
Γ(An)

I(V )
=
k[X1, . . . , Xn]

I(V )
,

which is in particular a finitely-generated k-algebra. From Corollary  3.11 , we know that
I(V ) =

√
I(V ). So in particular if f ∈ Γ(V ) is such that fN = 0 on V , i.e. fN ∈ I(V ), then

f = 0, i.e. f ∈ I(V ). Since polynomial rings over a field are reduced, it then follows that
Γ(V ) is reduced  

2
 . To summarize:

2i.e. it has no nilpotent elements
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• Γ(V ) is finitely generated.

• Γ(V ) is reduced.

The big question is: if some k-algebra has these two properties, is it of the form Γ(V )?

Definition 3.16. An affine k-algebra is a finitely generated reduced k-algebra, i.e.

A ∼=
k[X1, . . . , Xn]

I

for some radical ideal ideal I ⊂ k[X1, . . . , Xn].

Definition 3.17. Let X be a topological space. We call a nonempty subset of X irreducible
if X cannot be written as a union of two proper closed subsets.

Remark 3.18. Note that spaces that have such a property are quite pathological!

Proposition 3.19. An algebraic set Y ⊂ An is irreducible if and only if I(Y ) is prime.

Proof. First we will do the forward direction. Suppose Y is irreducible. Suppose fg ∈ I(Y ).
We want to show that either f ∈ I(Y ) or g ∈ I(Y ). First, fg ∈ I(Y ) implies (fg) ⊂ I(Y ),
and so V(I(Y )) ⊂ V(fg) = V(f) ∪V(g). Since Y ⊂ V(I(Y )), we get

Y = Y ∩ (V(f) ∪V(g)) = (Y ∩V(f)) ∩ (Y ∩V(g))

Now by the definition of the Zariski topology, V(f) and V(g) are closed. Since Y is an
algebraic set, it is also closed. Hence the above expresses Y as the union of two closed sets.
By our assumption that Y is irreducible, either:

• Y = Y ∩V(f), which implies Y ⊂ V(f) so f |Y = 0 so f ∈ I(Y ).

• analagous.

This proves the forward direction.

For the reverse direction, suppose I(Y ) = p is prime. We need to show Y is irreducible. Since
Y is closed, by () we know Y = V(I(Y )) = V(p). Suppose that we can write Y = Y1 ∪ Y2, ref
where Y1 and Y2 are closed in Y (hence in An). Then

p = I(Y ) = I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

But p is prime, so by () p = I(Y1) or p = I(Y2). But then either Y = V(p) = V(I(Y1)) = Y1 ref
or Y = V(p) = V(I(Y2)) = Y2.

Definition 3.20. An affine algebraic variety is an irreducible affine algebraic set.

4 Hilbert basis theorem

Proposition 4.1. Let (P,≤) be a poset. Then the following are equivalent:
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• (ascending chain condition, ACC) Every increasing sequence

x1 ≤ x2 ≤ x3 ≤ · · ·

stabilizes, i.e. there exists N ∈ N such that xN = xN+1 = · · · .

• Every nonempty subset of P has a maximal element.

Proof. (1 ⇒ 2) We prove the contrapositive, so suppose there exists a nonempty subset
Σ ⊂ P which does not have a maximal element. Let x1 ∈ Σ. Then there exists x2 ∈ Σ
such that x1 < x2 strictly. Repeating this procedure produces a sequence which does not
stabilize.

(2 ⇒ 1) Let x1 ≤ x2 ≤ · · · be an ascending chain. By assumption, the set {xi}i has a
maximal element, call it xN . But then it must be that xN = xN+1 = · · · , i.e. the chain
stabilizes.

We will want to apply Proposition  4.1 to the situation where we have an A-module M and
our partially ordered set is the submodules of M with ordering coming from inclusion.

Definition 4.2. An A-module M is called Noetherian if it satisfies the ascending chain
condition (equivelently, every collection of submodules of M has a maximal element). A
ring is called Noetherian if it is Noetherian as a module over itself.

Proposition 4.3. The following are equivalent:

1. M is Noetherian.

2. All submodules of M are finitely-generated.

Proof. (1⇒ 2) Suppose M is Noetherian. Let N ⊂M be a submodule. Let Σ be the set of
all finitely generated submodules of N . Then Σ is nonempty, since for instance it contains
a cyclic submodule  

3
 . Since every submodule of N is a submodule of M , it follows by the

assumption on M that Σ has a maximal element N̄ . We claim that N̄ = N , which will show
that N is finitely generated. Suppose otherwise. Then there exists x ∈ N − N̄ . But then
N̄+ 〈x〉 is finitely generated, violating the maximality of N̄ . Hence N = N̄ , and N is finitely
generated.

(2⇒ 1) Now suppose that submodules of M are finitely-generated. Let M1 ⊂ M2 ⊂ · · · be
an ascending chain of submodules. Let

M∞ =
⋃
n≥0

Mn.

Then M∞ is finitely-generated, since it is also a submodule. Call its set of generators
{x1, . . . , xn}. Since each xi must be in some Mki , let k = max{k1, . . . , kn}. But then
{x1, . . . , xn} ⊂ Mk, which shows that M∞ ⊂ Mk ⊂ M∞. Hence Mk = Mk+1 = · · · which
shows the chain stabilizes, hence M is Noetherian.

3i.e. a submodule generated by a single element (which lies in N)
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Example 4.4. Z is Noetherian as a module over itself. Submodules of a ring regarded as a
module over itself are just its ideals, and every ideal in Z is principal.

Example 4.5. Zp∞ , the p-primary part of Q/Z, is not Noetherian.

Proposition 4.6. If
0→M ′ →M →M ′′ → 0

is exact, then M is Noetherian if and only if M ′ and M ′′ are Noetherian.

Proof. HW hw

Theorem 4.7 (Hilbert basis theorem). If A is a Noetherian ring, then A[X] is also Noethe-
rian.

Proof. For an ideal E ⊂ A[X], define CnI ⊂ A to be the set of coefficents of Xn for
functions f ∈ I of degree ≤ n. In other words, it is the set of leading coefficents for degree
n polynomials in I along with 0.

Lemma 4.8. CnI ⊂ A is an ideal.

Proof. Exercise.

Lemma 4.9. C0I ⊂ C1I ⊂ C2I ⊂ · · · for any ideal I ⊂ A[X].

Proof. Exercise.

Lemma 4.10. Let I, J ⊂ A[X] be ideals, with I ⊂ J . Then

1. CiI ⊂ CiJ for all i.

2. If CiI = CiJ for all i, then I = J .

Proof. The first statement is clear after unwrapping definitions. For the second, suppose
CiI = CjJ for all i. Let f ∈ J . In light of the first statement, it suffices to show f ∈ I. We
will do this by inducting on deg(f) = n.

For n = 0, we know f ∈ I because then f is a constant, so its leading coefficient is itself.
Since CiI = CiJ , we know f ∈ C0I. So then there must be a degree 0 polynomial g ∈ I
whose leading coefficient is f . But there is only one, namely f , i.e. f = g, so f ∈ I.

In the general case, let
f = anX

n + · · ·+ a1X + a0 ∈ J,
with an 6= 0 (if an = 0 then we are done by induction). This means an ∈ CnJ = CnI, and so
there exists g ∈ I of the form

g = anX
n + bn−1X

n−1 + · · ·+ b1X + b0 ∈ I ⊂ J.

Then f − g ∈ J , and since deg(f − g) < n strictly we have by induction that f − g ∈ I. But
then f = (f − g) + g ∈ I too.

14



Let I0 ⊂ I1 ⊂ · · · be an ascending chain of ideals in A[X]. Consider the diagram

...
...

...

I2 C0I2 C1I2 · · ·

I1 C0I1 C1I1 · · ·

I0 C0I0 C1I0 · · ·

If we can show that the square on the right stabilizes “uniformly” at a certain height, then
so will I0 ⊂ I1 ⊂ · · · by the previous lemma. We can stabilize each column individually, but
we need to show that there is a single N > 0 after which all columns stabilize.

Consider the chain formed on the diagonal, i.e.

C0I0 ⊂ C1I1 ⊂ · · ·

This is an ascending chain in A by the above lemma, hence stabilizes at some index k.
But this means all arrows in above and right of (k, k) are equalities, by the principle that
A ⊂ B ⊂ A implies A = B:

...
...

CkIk+1 Ck+1Ik+1 · · ·

CkIk Ck+1Ik · · ·

Now we only need to uniformly stabilize the first k columns. Since they each individually
stabilize, and there’s finitely many of them, we can just take the max of the indices after
which they stabilize.

5 Nullstellensatz

For now let k be a field. Eventually we will require it to be algebraically closed.

Example 5.1. Recall that k[X] is the free k-algebra on the one-element set {X} (as an
algebra it is generated by one element, but as a module it is generated by countably infinite
many). Consider the diagram

{X} k[X]

A

i

α
εα
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where A is any k-algebra. Here α is any function. Since it is a function out of a one-element
set, it amounts to picking out an element in A. To make this diagram commute, εα must
send X 7→ α, which on a polynomial amounts to evaluating that polynomial at the point α.

Now suppose we take A = K to be monogenic, i.e. generated by one elment α. There are
two cases.

1. εα is injective. Then since it also maps to the generater of K, it’s surjective, hence
K ∼= k[X]. But then K is not a field, and in particular is not an algebraic extension
of k[X]. We may think of this as the case where α is transcendental.

2. εα is not injective. Then α is the root of some polynomial, hence “by definition”
K = k(α) is a finite algebraic extension of k.

Zariski’s lemma can be seen as a multivariable analogue of this property:

Theorem 5.2 (Zariski’s lemma). Let K be a finitely generated k-algebra. If K is a field,
then it is a finite algebraic extension of k.

We now assume k is algebraically closed.

Theorem 5.3 (weak Nullstellensatz). Let I ( k[X1, . . . , Xn] be a proper ideal. Then
V(I) 6= ∅, i.e. there exists at least one point in An

k which on which all of I vanishes.

Proof. The idea is to reduce to considering maximal ideals. The quotient of these with the
polynomial ring is a field, hence a finite algebraic extension by Zariski’s lemma. Since we
algebraically closed, this field must be k itself. We then pull back each inderminate to k to
find a point a such that ma ⊂ m, hence the two are equal, hence a ∈ V(m).

Since I is proper, it’s contained in a maximal ideal m. Then V(m) ⊂ V(I), so it suffices to
consider maximal ideals.

Let K := k[X1, . . . , Xn]/m. Consider the composite

k k[X1, . . . , Xn]

K

φ

i

π

By Zariski’s lemma, K is a finite algebraic extension of k. Since k is algebraiclly closed,
K ∼= k and in particular φ is an isomorphism.

Let ai = φ−1(X̄i). This means ai + m = Xi + m, i.e. Xi − ai ∈ m for all i. The the maximal
ideal ma = (X1−a1, . . . , Xn−an) is contained in m, hence ma = m. But certainly a ∈ V(ma),
so we’re done.

Corollary 5.4. If k is algebraically closed, then all maximal ideals are of the form ma =
(X1 − a1, . . . , Xn − an).

Theorem 5.5 (strong Nullstellensatz). Let a ⊂ k[X1, . . . , Xn]. Then I(V(a)) =
√
a.
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Proof. (⊃) Follows by Corollary  3.11 .

(⊂) Let h ∈ I(V(a)) be nonzero. We want to show h ∈
√
a. To that end, consider ã ∈

k[X1, . . . , Xn][Y ] given by

ã := 〈a ∪ {1− hY }〉 ⊂ k[X1, . . . , Xn][Y ],

i.e. the ideal generated by a and 1− hY .

We claim V(ã)) ⊂ An+1
k is empty. Suppose otherwise, i.e. there exists an element (a1, . . . , an, b) ∈

V(ã). Then since a ⊂ ã, we have that f̃(a1, . . . , an, b) = f(a1, . . . , an, b) = 0 for any f ∈ a.
But then (a1, . . . , an) ∈ V(a). But then 0 = (1−hY )(a1, . . . , an, b) = 1−h(a1, . . . , an)b = 1,
a contradiction. This proves the claim.

Now, by the weak Nullstellensatz we know that ã = k[X1, . . . , Xn][Y ], and in particular
1 ∈ ã. Then using the fact that ã = 〈a ∪ {1− hY }〉, we can write

1 =
r∑
i=1

Fi(X1, . . . , Xn, Y )gi(X1, . . . , Xn) + F (X1, . . . , Xn)(1− h(X1, . . . , Xn)Y )

for some gi ∈ a and some Fi ∈ k[X1, . . . , Xn][Y ]. Consider the Laurent ring k[X1, . . . , Xn][Y, 1/Y ]
and the evaluation map

ε : k[X1, . . . , Xn][Y ]→ k[X1, . . . , Xn][Y, 1/Y ]

Y 7→ 1

Y
.

In this new ring,

1 =
r∑
i=1

Fi(X1, . . . , Xn,
1

Y
)gi(X1, . . . , Xn) + F (X1, . . . , Xn,

1

Y
)(1− h(X1, . . . , Xn)

1

Y
).

We may multiply both sides by Y N for some large enough N such that

YN =
r∑
i=1

Gi(X1, . . . , Xn, Y )gi(X1, . . . , Xn) +G(X1, . . . , Xn, Y )(Y − h(X1, . . . , Xn))

for some Gi ∈ k[X1, . . . , Xn, Y ].

Now consider the evaluation map

η : k[X1, . . . , Xn][Y ]→ k[X1, . . . , Xn]

Y 7→ h.

Then the above becomes

hN =
r∑
i=1

Gi(X1, . . . , Xn, h(X1, . . . , Xn))gi(X1, . . . , Xn)

+G(X1, . . . , Xn, h(X1, . . . , Xn))(0).

Since gi ∈ a, it follows that hN ∈ a, so h ∈ a.
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Corollary 5.6. Let k be an algebraically closed field. Then there exist inverse bijections{
algebraic subsets

X ⊂ An
k

}
I

�
V

{
radical ideals
a ⊂ Γ(An

k)

}

Corollary 5.7. If a, b ⊂ k[X1, . . . , Xn] are ideals, then V(a) = V(b) if and only if
√
a =
√
b.

6 affine schemes: as spaces

Our goal will be to realize a commutative ring A as the “ring of functions” on some space
(which will be Spec(A)).

6.1 summary so far

Let k be an algebraically closed field.

1. Points a = (a1, . . . , an) ∈ An
k correspond naturally to maximal ideals ma = (X1 −

a1, . . . , Xn − an) ⊂ Γ(An).

2. A polynomial map F = (F1, . . . , Fn) : An → An, where Fi ∈ k[X1, . . . , Xn], induces a
k-algebra map

F# : Γ(Am)→ Γ(An)

Yj 7→ Fj

ref ref

3. We can recover F from F# in the following way: F# induces a map

F̃ : Specm(k[X1, . . . , Xn])→ Specm(k[Y1, . . . , Ym])

m 7→ (F#)−1(m),

where we then identity Specm(k[X1, . . . , Xn]) ∼= An and Specm(k[Y1, . . . , Ym]) ∼= Am.

4. Let a ⊂ A = k[X1, . . . , Xn] be an ideal. Consider the bijection

An ↔ Specm(k[X1, . . . , Xn])

a 7→ ma.

Then a ∈ V(a) if and only

a ∈ V(a)⇔{a} ⊂ V(a)

⇔I({a}) ⊃ I(V(a))

⇔ma ⊃
√
a

⇔ma ⊃ a.
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6.2 Zariski topology

Definition 6.1. Let A be a ring. For a subset E ⊂ A, define

V (E) := {p ∈ Spec(A) : p ⊃ E}.

Note p ⊃ E iff p contains the ideal generated by E, so we may as well consider E to be an
ideal above.

6.2. The idea now is to view an element f ∈ A as a “function” on Spec(A) with values in a
field: the value of f ∈ A at the point p ∈ Spec(A) is the image of f under the natural maps
to the residue field:

A
π−→ A/p

i−→ κ(p) := Frac(A/p).

This is a generalization of usual function evaluation: for f ∈ Γ(An), the value of f at a could
be considered as the image of f under the map

k[X1, . . . , Xn]→ k[X1, . . . , Xn]/ma → Frac(k[X1, . . . , Xn]/ma) = k

f 7→ f(X̄1, . . . , X̄n) = f(a1, . . . , an).

The simplification being that since ma is maximal, we already have a field before we take
the field of fractions (taking the field of fractions does nothing).

In this context, the notation in the above notation is justified: V ((f)) consists of prime
ideals containing (f), hence f will be killed in the quotient above, hence the value of f at
those primes is 0. More generally, for a subset E ⊂ A, note

V (E) =
⋂
f∈E

V (f) =
⋂
f∈E

{p ∈ Spec(A) : f ∈ p} = {p ∈ Spec(A) : E ⊃ p}

and we recover the definition.

6.3. The sets V (E) will be the closed sets in the topology we define on Spec(A). This
topology will also be called the Zariski topology for the following reason: recall that a ∈ V(a)
iff ma ⊃ a. Hence

V (A) ∩ Specm(An) = V(a)

Hence the earlier Zariski topology is nothing but the subspace topology of the new Zariski
topology on Spec(A), specifically the one on the subspace Specm(A) ∼= An.

Proposition 6.4. Let A be a ring, let X = Spec(A).

1. (order reversing) If E1 ⊂ E2 ⊂ A, then V (E1) ⊃ V (E2).

2. V (∅) = X and V (A) = ∅.

3. V (E) = V 〈E〉

4. For ideals a, b ⊂ A, we have V (a ∩ b) = V (a) ∪ V (b).

5. For ideals aα ⊂ A, we have V (
∑

α aα) =
⋂
α V (aα).
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Definition 6.5. The Zariski topology on X = Spec(A) is the topology whose closed sets are
the sets V (a) for some ideal a ⊂ A.

Remark 6.6. Recall from () that points in An correspond to maximal ideals of A. The set ref
of prime ideals include the maximal ideals; so this Zariski topology includes all the points of
An but also certain “smeared out” points, e.g. varieties such as V(Y −X2).

Proposition 6.7. The Zariski open sets

D(f) = X − V (f) = {p ∈ Spec(A) : f 6∈ p},

called distinguished open sets, form a basis for the Zariski topology on X.

Proof. We want to show than an arbitrary open set U ⊂ X is a union of distinguished open
sets. Let U = X − V (a) for some a ⊂ A. Let {fi}i be a set of generators of a (perhaps it is
the set of all elements in a). Then a =

∑
i(fi), implying

V (a) = V (
∑
i

(fi)) =
⋂
i

V (fi),

so
U = X − V (a) = X −

⋂
i

V (fi) =
⋃
i

(X − V (fi)) =
⋃
i

D(fi).

This shows what we want.

Proposition 6.8. D(fg) = D(f) ∩D(g).

Proof. HW.

Proposition 6.9. X = Spec(A) is quasicompact 

4
 .

Proof. It suffices to show an open cover of X by basic open sets admits a finite subcover
(since any open set is a union of basic open sets). Say U = {D(fα)}α∈Λ covers X. Then

∅ = X −
⋃
α

D(fα) =
⋂
α

(X −D(fα)) =
⋂
α

V (fα) = V (
∑
α

(fα)),

so
∑

α(fα) = A. Thus there exist α1, . . . , αn ∈ Λ and c1, . . . , cn ∈ A such that

1 = c1fα1 + · · ·+ cnfαn .

So A = (fα1) + · · ·+ (fαn). So

∅ = V (A) = V (
n∑
i=1

(fαi)) =
n⋂
i=1

V (fαi).

4i.e. compact but not necessarily Hausdorff; apparantly Bourbaki used “compact” to refer to compact
Hausdorff spaces
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So

X = X − ∅ = X −
n⋂
i=1

V (fαi) =
n⋃
i=1

(X − V (fαi)) =
n⋃
i=1

D(fαi).

This exhibits a finite subcover.

Proposition 6.10. X = Spec(A) is disconnected if and only if A admits a ring product
decomposition A ∼= A1 × A2.

Proof. For the reverse direction, suppose A = A1 × A2. By (), ref hw

Spec(A) ={p1 × A2 : p1 ∈ Spec(A1)} t {A1 × p2 : p2 ∈ Spec(A2)}
=V (0× A2) t V (A1 × 0).

This expresses X as the disjoint union of two nontrivial closed sets, hence X is disconnected.

For the forward direction, suppose X = V (a) t V (b) for some ideal a, b ⊂ A. Then

X = V (a) ∪ V (b) = V (a ∩ b)

implying a ∩ b ⊂ Nil(A), since it lies inside every prime ideal and the nilradical can be
characterized as the intersection of all prime ideals (). Also ref

∅ = V (a) ∩ V (b) = V (a + b),

implying a + b = A. Hence there exists a ∈ a and b ∈ b such that a + b = 1. Pulling these
two observations together, we can find a, b such that a+ b = 1 and (ab)N = 0 for some N .

We now claim (aN , bN) = A, where the notation denotes the ideal generated by the two
elements. Suppose not. Then there exists a maximal ideal m ⊃ (aN , bN). But aN ∈ m
implies a ∈ m, and similarly if bN ∈ m then b ∈ m. But then (a, b) = A ⊂ m, which is a
contradiction.

So there exists c, d ∈ A such that 1 = caN + dbN . Write α := caN and β = dbN for
convenience. Then

αβ = caN · dbN = cd(ab)N = 0.

Now
α = α · 1 = α(α + β) = α2 + αβ = α2,

so α is idempotent. Similarly β = β2. Hence α, β are a complete set of orthogonal idempo-
tents, so by () A ∼= A1 × A2 = Aα× Aβ. ref

6.3 upgraded Galois connection

6.11. () shows us how V (−) extended our previous V(−). How should we extend I(−)? For ref
a subset S ⊂ X = Spec(A), we want to think of this as the set of elements in A on which S
vanishes. In the case where S is a single element:

I({p}) ={f ∈ A : f(p) = 0}
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={f ∈ A : f ∈ p} = p,

where we have used (). The natural way to extend this is ref

I(S) ={f ∈ A : f(p) = 0 for all p ∈ S}

=
⋂
p∈S

{f : f(p) = 0} =
⋂
p∈S

p

=
⋂

S.

This motivates the following:

Definition 6.12. For S ⊂ X, define (the ideal)

I(S) :=
⋂
p∈S

p =
⋂

S ⊂ A.

Corollary 6.13.

1. If E ⊂ A, then V (E) ⊂ X is closed.

2. If S ⊂ X, then I(S) is an intersection of prime ideals, hence radical.

3. I, V are order reversing.

4. IV and V I are inflationary.

5. im(V ) = {closed subsets of X}.

6. (formal Nullstellensatz) imI = {radical ideals of A}.

Proof.

1. x

2. x

3. x

4. Note

I(V (a)) =I({p ∈ Spec(A) : p ⊃ a})

=
⋂
{p ∈ Spec(A) : p ⊃ a}

=
√
a ⊃ a.

5. x

6. The forward inclusion follows from (2). For the reverse inclusion, suppose a ⊂ A is
radical. Then a =

√
a, hence by the proof of (4) I(V (a)) =

√
a.
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6.14. We thus have the following correspondences:

• Zariski closed subsets of Spec(A) and radical ideals of A

• irreducible closed subsets of Spec(A) and prime ideals of A

• closed points of Spec(A) and maximal ideals of A

6.4 Noetherian spaces

Definition 6.15. A space X is Noetherian if it satisfies the ascending chain condition (ACC)
on open sets.

Remark 6.16. This is equivalent to satisfying the descending chain condition (DCC) on
closed sets. We will often use this property instead, because the closed sets we work with
are easier to describe than the open ones.

Proposition 6.17. If A is a Noetherian ring, then Spec(A) is a Noetherian space.

Proof. Let A be a Noetherian ring. Let X1 ⊃ X2 ⊃ · · · be a descending chain of closed
suspaces of X. Then I(X1) ⊂ I(X2) ⊂ · · · is an ascending chain of ideals in A, hence
stabilizes. So there exists N such that I(XN) = I(XN+1) = · · · . Hence also V I(XN) =
V I(XN+1) = · · · . Thus XN = XN+1 = · · · , since V I is the identity on closed subsets.

Proposition 6.18. Let X be a Noetherian space. Then

1. X is a finite union X = X1 ∪ · · · ∪Xn of irreducible closed subspaces.

2. If the above union (decomposition) is irredundant 

5
 , then it is unique up to permutation.

Proof.

1. Let Σ denote the set of nonempty, closed subsets of X which are note a finite union
of irreducible closed subsets. It suffices to show Σ is empty. Suppose otherwise.
Then, since X is Noetherian, Σ has a minimal element XM . By assumption XM

is not irreducible, hence can be written as XM = X1 t X2 for some nontrival closed
X1, X2 ⊂ XM . Then X1, X2 6∈ Σ by minimality, hence are themselves both finite
unions of closed irreducible subspaces. But then so is XM , a contradiction.

2. Suppose X = X1∪· · ·∪Xn and X = Y1∪· · ·∪Ym are both irredundant decompositions.
Then for each i

Xi = (Xi ∩X) = Xi ∩ (Y1 ∪ · · · ∪ Ym) = (Xi ∩ Y1) ∪ · · · ∪ (Xi ∩ Ym),

which expresses Xi as a finite union of closed sets. Since Xi is irreducible, it must be
that Xi = Xi ∩ Yj for some j, hence Xi ⊂ Yj. We can thus define a function α such
that Xi ⊂ Yα(i) for all i = 1, . . . , n. We can analagously get a function β such that
Yj ⊂ Xβ(j) for all j = 1, . . . ,m. Then Xi ⊂ Yα(i) ⊂ Xβ(α(i)), and by the irredundancy

5i.e. we can’t remove any Xi, i.e. Xi 6⊂ Xj for any i 6= j
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assumption it must be that β ◦α = 1. Similarly α ◦ β = 1. Hence m = n, and Xi = Yj
for all i and some j = 1, . . . , n.
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